سل یو

سیستم همکاری در فروش فایل

سل یو

سیستم همکاری در فروش فایل

دانلود مقاله مینیمم کردن توابع چند متغیره

یک کاربرد مهم حساب دیفرانسیل، پیدا کردن مینیمم موضعی یک تابع است مسائل مربوط به ماکزیمم کردن نیز با تئوری مینیمم کردن قابل حل هستند
دسته بندی ریاضی
بازدید ها 16
فرمت فایل doc
حجم فایل 561 کیلو بایت
تعداد صفحات فایل 45
مقاله مینیمم کردن توابع چند متغیره

فروشنده فایل

کد کاربری 1024
کاربر

مینیمم کردن توابع چند متغیره


مقدمه:
یک کاربرد مهم حساب دیفرانسیل، پیدا کردن مینیمم موضعی یک تابع است. مسائل مربوط به ماکزیمم کردن نیز با تئوری مینیمم کردن قابل حل هستند. زیرا ماکزیمم F در نقطه ای یافت می شود که -F مینیمم خود را اختیار می کند.
در حساب دیفرانسیل تکنیک اساسی برای مینیمم کردن، مشتق گیری از تابعی که می‌خواهیم آن را مینیمم کنیم و مساوی صفر قرار دادن آن است.
نقاطی که معادله حاصل را ارضا می کنند، نقاط مورد نظر هستند. این تکنیک را می توان برای توابع یک یا چند متغیره نیز استفاده کرد. برای مثال اگر یک مقدار مینیمم را بخواهیم، به نقاطی نگاه می کنیم که هر سه مشتق پاره ای برابر صفر باشند.
این روند را نمی توان در محاسبات عدی به عنوان یک هدف عمومی در نظر گرفت. زیرا نیاز به مشتقی دارد که با حل یک یا چند معادله بر حسب یک یا چند متغیر بدست می آید. این کار به همان سختی حل مسئله بصورت مستقیم است.

مسائل مقید و نامقید مینیمم سازی:
مسائل مینیمم سازی به دو شکل هستند:نامقید و مقید:
در یک مسئله ی مینیمم سازی نامقید یک تابع F از یک فضای n بعدی به خط حقیقی R تعریف شده و یک نقطه ی با این خاصیت که

جستجو می شود.
نقاط در را بصورت z, y, x و... نشان می دهیم. اگر نیاز بود که مولفه های یک نقطه را نشان دهیم می نویسیم:

در یک مسئله ی مینیمم سازی مقید، زیر مجموعه ی K در مشخص می شود . یک نقطة
جستجو می شود که برای آن:

چنین مسائلی بسیار مشکل ترند، زیرا نیاز است که نقاط در K در نظر گرفته شوند. بعضی مواقع مجموعه ی K به طریقی پیچیده تعریف می شود.
سهمی گون بیضوی به معادله‌ی

را در نظر بگیرید که در شکل 1-14 مشخص شده است. به وضوح مینیمم نامقید در نقطه ی
(1و1) ظاهر می شود، زیرا:

اگر
مینیمم مقید 4 است و در (0،0) اتفاق می افتد.
Matlab دارای قسمتی است برای بهینه سازی که توسط اندرو گریس طراحی شده و شامل دستورات زیادی برای بهینه سازی توابع عمومی خطی و غیر خطی است.
برای مثال ما می توانیم مسئله ی مینیمم سازی مربوط به سهمی گون بیضوی نشان داده شده در شکل 1-14 را حل نماییم.
ابتدا یک M-file به نام q1.m می نویسیم و تابع را تعریف می کنیم: