سل یو

سیستم همکاری در فروش فایل

سل یو

سیستم همکاری در فروش فایل

دانلود استفاده از مدلهای استوکستیک در پیش بینی جریان

پیش بینی یک عنصر کلیدی در تصمیم گیری مدیریت است کار آیی نهائی هر تصمیمی‌بستگی به طبیعت یک دنباله از حوادث دارد که متعاقب آن تصمیم می‌آید
دسته بندی عمران
بازدید ها 13
فرمت فایل doc
حجم فایل 337 کیلو بایت
تعداد صفحات فایل 29
استفاده از مدلهای استوکستیک در پیش بینی جریان

فروشنده فایل

کد کاربری 1024
کاربر

استفاده از مدلهای استوکستیک در پیش بینی جریان


- مقدمه:
پیش بینی یک عنصر کلیدی در تصمیم گیری مدیریت است. کار آیی نهائی هر تصمیمی‌بستگی به طبیعت یک دنباله از حوادث دارد که متعاقب آن تصمیم می‌آید. توانایی برای حدس زدن جنبه های غیر قابل کنترل این حوادث قبل از تصمیم گیری باید به امکان انتخاب بهتری نسبت به موردی که این توانایی در دسترس نباشد بیانجامد. به این دلیل سیستمهای مدیریت برای طرح ریزی و کنترل عملیات یک سیستم نوعا از یک تابع پیش بینی برخوردارند. برای مثال در علم هیدرولوژی هر گونه طرح و برنامه ریزی که در حوضه های آبریز ومخازن مربوط به آن صورت می‌گیرد بایستی بر اساس تجزیه و تحلیل داده ها و شناخت الگویی برای سیستم و اطلاعات مربوط به خواص هیدرولوژیکی آن حوضه باشد به این داده های متغیرهای هیدرولوژیکی گفته می‌شود و شامل اطلاعاتی است که در تصمیم گیری نقش موثر وحیاتی دارد. ملاحظه می‌شود که پیش بینی حدس وتخمینی از رویدادهای آینده است..هدف پیش بینی کاهش ریسک در تصمیم گیری است. با تخصیص منابع بیشتری به پیش بینی قادر به اصلاح وتکمیل دقت پیش بینی می‌شویم.
یکی از روشهای تجزیه وتحلیل داده ها در هیدرولوژی روش استوکستیکی و استفاده از مدلهای استوکستیکی است. در این پروژه هدف نهایی تجزیه و تحلیل سری زمانی مربوط به دبی متوسط سالانه رودخانه ای برای مدت 50 سال و مدل سازی و پیش بینی برای 50 سال آینده خواهد بود.

2- تعاریف
1-2 سری زمانی
مشاهدات وآماری که بافاصله زمانی یکسان به دست آمده باشند سری زمانی نامیده می‌شوند. اگر پدیده ای معین باشد سری زمانی آن معین واگر احتمالی باشد سری زمانی آن احتمالی نامیده می‌شود.
چند الگوی مشخصات سریهای زمانی در شکل زیر نشان داده شده اند که در آن Xt مشاهده برای پریود t است

شکل 1- مشخصات سریهای زمانی
الف) فرآیند ثابت ب) روند خطی ج) تغییرات سیکلی د) ضربه ه) تابع پله ای
و) جهش
هر یک از حالات در شکل فوق توصیف کننده الگو و مثال خاصی می‌باشد در این پروژه بعلت سالانه بودن داده ها ما با حالتهای الف وب سرو کار خواهیم داشت که در قسمت مربوطه توضیح داده می‌شود.

2-2 مدلهای استوکستیکی
قبل از اینکه با در دست داشتن یک سری آماری بخوایم مدل استوکستیکی مناسب را انتخاب کنیم، می‌بایست خواص اولیه آماری داده ها را تعیین کرد. این خواص شامل میانگین، واریانس، انحراف استاندارد و ضریب چولگی می‌باشد. از دیگر خواص آماری در سریهای زمانی، تعیین و محاسبه اتوکواریانس (Auto covariance) است که درجه خود وابستگی سری زمانی را نشان می‌دهد. برای مثال جهت تعیین تاخیر k از سری زمانی از رابطه زیر استفاده می‌نماییم.

فهرست مطالب

- مقدمه: 1
2- تعاریف 2
1-2 سری زمانی 2
2-2 مدلهای استوکستیکی 3
3- انجام، تجزیه و تحلیل پروژه: 5
گام اول - رسم سری زمانی و تعیین مقادیر آماره های نمونه 5
گام دوم - بررسی وجود مولفه های روند (Trend) و دوره ای Periodic و حذف آنها 7
گام سوم- بررسی نرمال بودن داده ها 9
گام چهارم- شناسایی مرتبه مدل با مشاهده منحنی سری زمانی: 10
گام پنجم- تولید سری زمانی یا میانگین صفر (استاندارد کردن داده ها) 11
گام ششم – ترسیم Partial correlogram, corrleogram 12
گام هفتم- بررسی مدلهای انتخاب شده و انتخاب الگوی مناسب 14
تعریف ضریب آکائی 15
گام هشتم پیش بین و تولید نمونه 50 ساله 23
صورت پروژه درس هیدرولوژی مهندسی پیشرفته 26