دسته بندی | ریاضی |
بازدید ها | 19 |
فرمت فایل | doc |
حجم فایل | 245 کیلو بایت |
تعداد صفحات فایل | 21 |
کاربرد روش L1 – تقریب در معادلات انتگرال تکین
- مقدمه: معادلات انتگرال را میتوان با استفاده از فن LP – تقریب (به ویژه L1 تقریب) به طور موثری حل کرد. در این متن فن کلی را مورد بحث قرار میدهیم و سپس آن را با حل چند معادله انتگرال مختلف توضیح میدهیم. علاوه برامتیازات دیگر، این روش به طور موفقیت آمیزی در مورد معادلات انتگرال تکین و همین طور معادلات انتگرال قویاً تکین (نظیر انتگرال های آدامار یا متناهی – قسمت) تعمیم داده شده و به کار رفته است. در بحث حاضر، مروری بر این مطالعه ارائه میشود.
2- مقدمات ریاضی :
به طور کلی هدف این متن عبارت است از کاربرد فن LP- تقریب در حل یک معادله انتگرال فردهولم (خطی یا غیر خطی) نوع اول یا دوم به صورت
در معادلة بالا تابع هدایتگر و هسته K توابعی معلوم اند، در حالی که تابع مجهول است که باید آن را بیابیم پارامتر نیز معلوم است. مساله کلی LP- تقریب پیوسته را میتوان به صورت زیر فرمول بندی کرد:
تابع f معین روی یک بازة حقیقی مانند x همراه با یک تابع تقریب مانند F(A)، که به متغیر n پارامتری A=(a1 , …,an) در Rn وابسته است، مفروض اند.
در این صورت مساله LP- تقریب پیوسته به این معنی است که باید برداری مانند به گونه ای بیابیم که به ازای هر رابطة :
برقرار باشد.
جنبة اصلی مساله که باید مورد بحث واقع شود فرمول بندی مجدد مساله معادله انتگرال به صورت یک مساله LP- تقریب است. برای این منظور، فرض کنیم بتوان تابع جواب را با تابع F(A)، که ممکن است خطی یا غیر خطی باشد، تقریب زد. اگر این تقریب را در معادله انتگرال بگذاریم، رابطة زیر به دست میآید:
در آن صورت مساله تقریب را میتوان بر حسب LP- نرم به صورت:
بیان کرد که در آن F(A,x) نسبت به A روی Rn و نسبت به x روی [a,b] تعریف شده است. توجه داشته باشید که میتوان عبارت
را تابعی مانند تلقی کنیم که فقط به A بستگی دارد. پس میتوان مسأله تقریب را به عنوان یک مسأله مینیمم سازی غیر مقید وابسته به n متغیر an,...,a1 در نظر گرفت. بنابراین، J فقط باید نسبت به این متغیرها مینیمم شود. در نتیجه، با حل مسأله مینیمم سازی بالا امکان حل تقریبی معادله انتگرال وجود دارد.
برای مطالعة درباره جزئیات این فن (و از جمله آنالیز ریاضی) مراجع [19] , [18] تالیف De Klerk را ببینید.
در این مرحله دو تفسیرزیر ضروری اند:
مقادیر مخلتف P را میتوان مورد استفاده قرار داد. برای مثال به ازای P=1 مسأله منجر میشود به مسأله کمترین قدر مطلق و به ازای P=2 مسأله منجر میشود به مسألة کمترین مربعات. دلیلی وجودندارد که مقادیر مثبت دیگر P را در نظر نگیریم. حالت P=2 را بیشتر می شناسیم، در حالی که حالت P=1 کمتر آشناست. بنابراین احساس میشد که این حالت باید حاوی چالش های عددی جالبی (در رابطه با قدر مطلقی که در انتگرالده ایجاد می شود) باشد. توجه داشته باشید که خطی یا غیر خطی بودن انتگرالده بالا نسبت به A بستگی به تابع تقریب F(A) و هسته K دارد. در روش عددی ای که در اینجا مورد بحث قرار میگیرد تمایز خاصی بین خطی یا غیر خطی بودن قائل نمیشویم.
3- شیوة عددی و مثال ها :
فن عددی در اصل از دو شیوة عددی تشکیل شده است، یعنی شیوة مینیمم سازی و شیوة انتگرال گیری.
مینیمم سازی با استفاده ازیک الگوریتم استاندارد بهینه سازی انجام میگیرد. الگوریتم UMPOL در IMSL Library که بر پایة روش «سیمپلکس داون هیل» از نلدر و مید (به مثال [37] تالیف Press مراجعه کنید)، که گر چه زیاد سریع نیست اما این مزیت را دارد که بسیار قوی است و به مشتق گیری ها نیازی ندارد. در واقع ماشین سر به زیری است که معمولاً مقدار مینیمم یک تابع را به درستی مییابد . همچنین
De Klerk در [20] متذکر شده است که روش لووس- جاکولا [34] نیز روشی قوی است که به مشتق گیری ها نیازی ندارد و بررسی بیشتر جواب هایی که با بهره گیری ازاین روش بدست می آیند را مفید دانسته است.
انتگرال گیری عددی با استفاده از فن کوادراتور اتوماتیکی که ونتر و لاوری [3] با یک انتگرالده به صورت g(|f(x)|) آورده اند، انجام میشود. برای بدست آوردن این شیوه این محققین رویة انتگرال گیری تطبیقی استاندارد QAGE را تغییر داده اند (از QUAD PACK تالیف [35] Piessens ). در حین فرایند انتگرال گیری، با استفاده ازمقادیر موجود برای تابع، صفرهای تابع پیدا میشوند که از آنها (صفرهای تابع) به عنوان نقاط تقسیم در انتگرال گیری استفاده میکنیم.
در [20] ذکر شده است که ونتر ولاوری این روش را با موفقیت بالایی امتحان کرده اند، همچنین در پایان نامه دکتری ونتر نیز از بکارگیری این روش نتایج خوبی بدست آمده است [8].
De Klerk در [18] نتایج رضایت بخشی را با استفاده از این استراتژی تقریب بدست آورده است.
بر خلاف بسیاری روش های دیگر، با استفاده از روشی تقریبی نظیر روش یاد شده، در ساختن جواب نیز آزادی عمل بیشتری داریم (مثلا می توان توابع گویا و توابع مثلثاتی را بکار برد).
با اینکه داشتن تجربه در ارتباط با انتخاب یک تابع تقریب لازم است اما این امر موجب کنار گذاردن روش مذکور نمی شود.
De Klerk با در نظر گرفتن مثال های زیر، برخی از نتایج اصلی سال های گذشته را به بحث میگذارد.
مثال (1- ) پارامتر به سمت یکی از مقادیر ویژه مسأله میل میکند.
هسته جدایی پذیر زیر را در نظر بگیرید، داریم :
که در آن دو مجموعه از توابع مستقل خطی هستند.
در این حالت معادله انتگرال فردهولم به طور کلی یک و فقط یک جواب دارد. تنها استثنا وقتی است که یکی از مقادیر ویژه هسته را به خود میگیرد که در این حالت مسأله جواب ندارد (Tricomi [9]) . مثال بعد کارایی فن مذکور را نشان میدهد. معادله انتگرال فردهولم نوع دوم زیررا در نظر بگیرید.
دسته بندی | ریاضی |
بازدید ها | 21 |
فرمت فایل | doc |
حجم فایل | 494 کیلو بایت |
تعداد صفحات فایل | 18 |
عدد طلایی
دنیای اعداد بسیار زیباست و ما می توانیم در آن شگفتی های بسیاری را بیابیم. در میان برخی از آنها اهمیت فوق العاده ای دارند، یکی از این اعداد که سابقه ی آشنایی بشر با آن به هزاران سال پیش از میلاد می رسد، عددی است به نام نسبت طلایی یا Golden Ratio.
اگر پاره خطی را در نظر بگیریم و فرض کنیم که آنرا بگونه ای تقسیم کنیم که نسبت بزرگ به کوچک معادل کل پاره خط به قسمت بزرگ باشد، اگر معادله ساده یعنی را حل کنیم. ( کافی است به جای b عدد یک قرار دهیم، بعد a را بدست آوریم)، به نسبتی معدل تقریباً 1/61803399 یا 1/618 خواهیم رسید. شاید باور کردنی نباشد، اما بسیاری از طراحان و معماران بزرگ برای طراحی محصولات خود امروز از این نسبت طلایی استفاده می کنند، چرا که به نظر می رسد ذهن انسان با این نسبت انس دارد و راحت تر آن را می پذیرد.
این نسبت نه تنها توسط معماران و مهندسان برای طراحی استفاده می شود، بلکه در طبیعت نیز کاربردهای بسیاری دارد.
به نسبت بین خط های صورت این تصویرها نسبت طلایی گفته می شود.
اهرام مصر
یکی از قدیمی ترین ساخته های بشری است که در آن هندسه و ریاضیات بکار رفته شده است.
مجموعه اهرام GIZA در مصر که قدمت آنها به بیش از 2500 سال پیش از میلاد می رسد، یکی از شاهکارهای بشری است، در آن نسبت طلایی بکار رفته است. به این شکل نگاه کنید که در آن بزرگترین هرم از مجموعه ی هرم GIZA خیلی ساده کشیده شده است.
مثلث قائم الزاویه ای که با نسبت های این هرم شکل گرفته شده باشد به مثلث قائم مصری یا Egyptian Triangle معرف هست و جالب اینجاست که بدانید نسبت وتر به ضلع هم کف هرم معادل با نسبت طلایی یعنی دقیقاً 1/61804 میباشد. این نسبت با عدد طلایی تنها در رقم پنجم اعشار اختلاف دارد، یعنی چیزی حدود یک صد هزارم . حال توجه شما را به این نکته جلب می کنیم که اگر معامله فیثاغورث را برای این مثلث قائم الزاویه بنویسیم به معادله ای مانند خواهیم رسید که حاصل جواب آن همان عدد معروف طلایی خواهد بود. معمولاً عدد طلایی را با نمایش می دهند.
طول وتر برای هرم واقعی حدود 356 متر و طول ضلع مربع قاعده حدوداً معادل 440 متر می باشد، بنابریان نسبت 356 بر 320 معادل نیم ضلع مربع، برابر با عدد 1/618 خواهد شد.
کپلر ( Gohannes Kepler 1571-1630)
منجم معروف نیز علاقه ی بسیاری به نسبت طلایی داشت، به گونه ای که در یکی از کتاب های خود اینگونه نوشت: "هندسه دارای دو گنج بسیار با اهمیت می باشد که یکی از آنها قضیه ی فیثاغورث و دومی رابطه ی تقسیم یک پاره
خط به نسبت طلایی می باشد. اولین گنج را به طلا و دومی را به جواهر تشبیه کرد."
تحقیقاتی که کپلر راجع به مثلثی که اضلاع آن به نسبت اضلاع مثلث مصری باشد به حدی بود که امروزه این مثلث به مثلث کپلر نیز معروف می باشد. کپلر پی به روابط بسیار زیبایی میان اجرام آسمانی و این نسبت طلایی پیدا کرد.
آشنایی با سری فیبونانچی
باورکردنی نیست، اما در سال 1202 لئونارد فیبونانچی توانست به یک سری از اعداد دست پیدا کند، که بعدها به عنوان پایه برای بسیاری از رابطه های فیزیک و ریاضی استفاده شد، کافی است از عدد صفر و یک شروع کنید، آنها را کنار هم بگذارید و عدد بعدی را از جمع کردن دو عدد قبل بدست آورید، به سادگی به این رشته از اعداد خواهید رسید:
البته برخی از ریاضی دانان عدد صفر را جزو رشته فیبونانچی نمی دانند و یا حداقل آن را جمله ی صفرم سری می دانند، نکته ای که تعجب برانگیز است آنکه اگر از عدد سوم نسبت اعداد این سری را به عدد قبلی حساب کنیم خواهیم داشت:
1/1, 2/1, 3/2, 5/3, 8/5, 13/8, 21/13, 34/21, 55/34, 89/55, 144/89.000
و یا :
1, 2, 1.5, 1,666, 1.6, 1,625, 1.6153, 1.6190, 1.6176, 1.6181, 1.6179
بله بنظر می رسد که این رشته به سمت همان عدد طلایی معروف میل میکند. بگونه ای که اگر نرخ عدد چهلم این رشته را به عدد قبلی حساب کنیم به عدد 1.618033988749895 می رسیم که با تقریب 14 رقم اعشار نسبت طلایی را نشان می دهد.
بعدها محاسبات و استدلال های ریاضی نشان داد که این سری همگرا به سمت نسبت طلایی می باشد و جمله عمومی آنرا با بتقریب می توان اینگونه نمایش داد :
دسته بندی | ریاضی |
بازدید ها | 8 |
فرمت فایل | doc |
حجم فایل | 805 کیلو بایت |
تعداد صفحات فایل | 55 |
ریاضیات و بند کفش
آیا هیچ گاه از خود پرسیده اید که چه کسی یک ریاضیدان است؟ چندین سال پیش حرفه ای برای این پرسش در ذهن من ایجاد شد و به نظرم رسید که ریاضیدان شخصی است که قدرت تشخیص فرصتهای موجود برای به کار گیری ریاضیات را دارد و این در حالی است که بقیه افراد متوجه این فرصتها نیستند. در این مورد می توان بند کفش را در نظر گرفت آقای جان هاتسون استاد علوم کامپیوتر دانشگاه کارولینای شمالی مقاله ای با عنوان
» معمای بند کفش« به رشته تحریر درآورده است. حداقل سه نوع آرایش کلی برای بستن بند کفش وجود دارد که عبارت است از نوع امریکایی(زیگراگ)، نوع اروپایی و نوع کفاشی(ایرا نی). هر چند از نظر خریدار شکل ظاهری و زمان لازم برای گره زدن دارای اهمیت است ولی برای تولید کنندگان کفش، موضوع مهمتر آن است که کدام یک از آرایشها دارای کوتاهترین طول بوده و در نتیجه کمترین هزینه را در بر خواهد داشت؟ در این مبحث به منظور یافتن طول بند فقط اندازه خطوط مستقیم مورد توجه قرار گرفته است. فزض شده است که طول مورد نیاز برای گره زدن در تمامی آرایشها یکسان است و از این رو در نظر گزفته نشده است. توصیه میشود از چشمهای کسی ه کفش را پوشید ه است به کفش بنگرید و در این راستا منظور از ردیف بالای سوراخها آنهایی است که نزدیک پا باشند.نکته دیگر اینکه در اینجا ضخامت بند (ضخامت خط) معادل صفر و سوراخها به عنوان نقطه فرض شده اند. حال اگر به دقت به مساله بنگریم، خواهیم دید که طول بند به سه پارامتر بستگی دارد که در روی شکل نیز مشخص شده اند: 1- تعداد سوراخها(n ) 2- فاصله بین سوراخهای متوالی (d ) 3- فاصله بین سوراخها ی چپ و راست در هر ردیف (g ).
بااستفاده از قضیه فیثاغورث می توان طول بندها را یافت (البته شادی تعجب کنید که قضیه چنین مرد بزرگی دارای این کاربرد باشد):
دسته بندی | ریاضی |
بازدید ها | 20 |
فرمت فایل | doc |
حجم فایل | 184 کیلو بایت |
تعداد صفحات فایل | 19 |
مبحث تابع
تعریف زوج مرتب:
هر دستة متشکل از دو عنصر با ترتیب معین را یک زوج مرتب گویند. مانند زوچ مرتب (x,y) که x را مؤلفه اول مختص اول یا متغیر آزاد گویند و y را مؤلفه دوم مختص دوم متغیر وابسته( تابع) یا تصویر گویند و نمایش هندسی آن نقطهای در صفحة مختصات قائم است که طول آن برابر x و عرض آن برابر y است.
تساوی بین دو زوج مرتب:
دو زوج مرتب با یکدیگر مساویاند اگر دو نقطه اگر مؤلفههای نظیربهنظیر آنها با هم برابر باشند یعنی:
مثال: از تساوی زیر مقادیر x,y را بیابید:
تعریف حاصلضرب دکارتی دو مجموعه :
حاصلضرب دکارتی در مجموعه B,A که با نماد نشان داده میشود عبارت است از مجموعه تمام زوج مرتبههائی که مؤلفة اول آنها از A و مؤلفه دوم آنها از B باشد یعنی:
مثال: حاصلضرب دکارتی درهر یک از مثالهای زیر را بصورت مجموعهای از زوجهای مرتب بنویسید و نمودار آن را در دستگاه محورهای مختصات قائم رسم نمائید:
(1
(2
نمودار حاصلضرب دکارتی مجموعههای داده شدة زیر را در دستگاه محورهای مختصات قائم رسم کنید.
ویژگیهای حاصلضرب دکارتی مجموعهها :
فضای دوبعدی ( صفحه) 3) , ,
4) , ,
5) مثال:
تضاد زوجهای مرتب:
تعریف ریاضی رابطه:
اگر B,A دو مجموعه دلخواه باشند هر زیرمجموعه از حاصلضرب دکارتی را یک رابطه از A در B گویند اگر f یک زیرمجموعه از باشد گویند. F یک رابطه از A در B است به عبارت دیگر رابطه Fمجموعه تمام زوج مرتبهای است که مؤلفههای اول و دوم آن با شرایطی خاص( قانون یا ضابطة خاص) به یکدیگر مربوط میشوند. به بیان دیگر رابطه f زیرمجموعهای از است که با ضابطه یا قانون خود مختص اول زوجهای مرتب را به مختص دوم آنها پیوند میدهد مانند رابطه پدر و فرزندی رابطه مالک و مستأجری رابطه عبد و مولا رابطه اعداد با مجذور آنها.
مفهوم تابع: تابع بیانگر چگونگی ارتباط مقدار یک کمیت(متغیر وابسته y= ) به مقدار یک کمیت دیگر( متغیر مستقل x= ) است مفهومی که خواص آن، انواع آن، نمودار آن حد و پیوستگی آن؛ مشتق و انتگرالگیری از آن و… نه تنها در ریاضیات بلکه درهمه علوم و فنون نقش مهمی ایفا میکند و در زندگی خود نیز به نمونههایی برمیخوریم که مقدار یک کمیتی( کمیت تابع) به مقدار کمیت دیگری( کمیت آزاد) وابسته است؛
مثال: متغیرهای وابسته (y) و متغیرهای مستقل(x) را در مثالهای زیر مشخص کنید:
1) افزایش طول یک فنر به وزنهای که به آن آویزان میشود بستگی دارد.
جواب: « افزایش طول فنر» = متغیر وابسته(y ) و « مقدار وزنه» = متغیر آزاد (x)
2) »هر که بامش بیش، برفش بیشتر»
جواب:« مقدار برف انباشتهشده روی پشتبام» = متغیر وابسته(y ) و« مساحت پشتبام»= متغیر آزاد
3) مقدار مکعب هر عددی به آن عدد وابسته است.
جواب: مکعب عدد«= متغیر وابسته(y ) و « خود عدد»= متغیر مستقل(x )
تذکر: با توجه به اینکه هر تابع یک رابطه است( عکس این مطلب درست نیست یعنی هر رابط ممکن است تابع نباشد.
تعریف تابع:
اگر رابطهf بصورت مجموعه زوجهای مرتب باشد آنگاه رابطةf را تابع گویندهرگاه هیچ دوزوج مرتب متمایزی در f دارای مؤلفههای اول یکسان نباشند یعنی:
دسته بندی | ریاضی |
بازدید ها | 18 |
فرمت فایل | doc |
حجم فایل | 186 کیلو بایت |
تعداد صفحات فایل | 38 |
ماتریس
مقدمه :
شاید یکی از کاربردی ترین مفاهیم و مباحث ریاضی ، مبحث مربوط به ماتریس است که از آن به عنوان ابزاری قوی در مباحث دیگر ریاضیات و بخصوص در فیزیک کوانتم و علومی چون آمار ، حسابداری و ........ استفاده می شود . امروزه ماتریس ها یکی از ابزارهای اساسی محاسبات علمی ریاضیات به حساب می روند و در واقع ، نقش امروز ماتریس ها در ریاضیات و پیشبرد آن ، مانند نقش دیروز اعداد است . ریاضیات کاربردی ، در تمام شاخه ها ، نیاز مبرم به ماتریس دارد ، به خصوص که در بیش تر موارد حل مسائل عملی به نوعی با حل دستگاه های معادلات یا نامعادلات پیوند می خورد که حل چنین دستگاه هایی با ماتریس ها ارتباط تنگاتنگ دارد . ا زاین ور ، این مبحث حتی در سطح دبیرستان نیز از اهمیت ویژه ای برخوردار است ، به طوری که هم در کتاب درسی ریاضیات سال دوم ، هم در هندسه ی تحلیلی و جبر خطی دوره ی پیش دانشگاهی و هم در کتاب های ریاضی عمومی رشته های مهندسی از آن استفاده شده است . لذا ، با مطالعه و یادگیری مفاهیم مربوط به ماتریس ها و کاربرد آن ها ، یکی از جالب ترین و در عین حال ، مفید ترین موضوعات ریاضی بررسی خواهد شد .
تعریف ماتریس : بر اساس تعریفی که اولین بار یک ریاضیدان انگلیسی به نام «کیلی» برای ماتریس ارائه داد ، «ماتریس ، آرایشی از اعداد حقیقی است که روی سطرها و ستون های منظم قرار گرفته و با دو کروشه محصور شده باشند .» هر یک از اعداد حقیقی موجود در یک ماتریس را یک درایه یا عنصر آن ماتریس می نامند .
هر یک از آرایش های زیر یک ماتریس است : (ماتریس ها را با حروف بزرگ نشان می دهیم . )
هر درایه در یک ماتریس ، در تقاطع یک سطر با یک ستون قرار دارد ، مثلاً در ماتریس A ، عدد 2 در تقاطع سطر اول با ستون دوم قرار دارد و یا در ماتریس B ، عدد در تقاطع سطر دوم و ستون دوم واقع است که در واقع ، جایگاه هر درایه در هر ماتریس با همین تقاطع ها مشخص و برای هر درایه در هر ماتریس دو اندیس در نظر گرفته می شود که اولی سطر و دومی ستون مربوط به آن درایه را معلوم می کند . برای مثال ، وقتی می نویسیم یعنی درایه ی روی سطر دوم و ستون سوم و برای هر ماتریس نیز دو اندیس در نظر گرفته می شود که اندیس اول ( از چپ ) تعداد سطرها و اندیس دوم تعداد ستون های آن ماتریس را نشان می دهد . برای مثال اگر B ماتریسی با دو سطر و سه ستون باشد ، می نویسیم و می گوییم « B ماتریسی 2 در 3 » یا «از مرتبه ی 2 در 3 » است ، و در حالت کلی اگر A ماتریسی باشد ، داریم :