دسته بندی | ریاضی |
بازدید ها | 6 |
فرمت فایل | doc |
حجم فایل | 9 کیلو بایت |
تعداد صفحات فایل | 13 |
تحقیق در مورد هندسه
مقدمه
هندسه هم مانند حساب، یکی از کهن ترین بخش های دانش ریاضیات است.تاریخ پیدایش آن در ژرفای سده های گذشته است.هندسه در دنیای کهن،بیشتر جنبه کاربردی داشته است و این دوران خود را، که طولانی ترین دوران تکامل آن است، در ایلام، بابل،مصر،چین و در واقع در همه سرزمین های گذرانده است و همه ملت ها در ارتباط بااندازه گیری، به ویژه اندازه گیری زمین های کشاورزی، در ساختن مفهوم های هندسی دخالت داشته اند.
مفهوم اصل،قضیه ودیدگاه اقلیدس:
«اصل» در هندسه، به حکمی گفته می شود که بدون اثبات پذیرفته شود؛ در واقع درستی آن با تجربه سده های متوالی تایید می شود.حکم هایی که به یاری اصل ها ثابت می شوند،« قضیه » نام گرفته اند. اثبات،عبارت از استدلالی است که به یاری آن و به یاری اصل ها، می توان قضیه را ثابت کرد.قضیه،ترجمه ای از واژه یونانی «ته ئورم» که به معنای «اندیشیدن» است.
اصل ها و قضیه ها را برای نخستین بار،دانشمندان یونانی وارد دانش کردند. ارشمیدس(سده سوم پیش از میلاد) در کتاب های خود،بارها از اصل وقضیه استفاده کرده است. تاسرانجام اقلیدس(سده سوم پیش از میلاد) در«مقدمات» خود در سیزده کتاب اصل هاو قضیه های هندسی را منظم کرده است.
«مقدمات اقلیدس» تنها کتابی است که در طول نزدیک دو هزار سال پس از او، هندسه را به دیگران آموخته است.حتی امروز هم، هندسه دبیرستانی بر اساس مقدمات اقلیدس است.
برخی از اصل ها را ،اقلیدس «پوستولا» (خواست)نامیده است. برای نمونه،نخستین پوسترلا در «مقدمات» اقلیدس، به این ترتیب تنظیم شده است: «دو نقطه را میتوان به وسیله خط راست به هم وصل کرد.»
به ظاهر، پوستولاهای اقلیدس،ویژه هندسه است. او اصل هایی را که عمومی ترند ودر دانش های دیگر هم به کار می روند «آکسیوم» می نامد. امروز همه اصل ها(آکسیوم ها وپوستولاها) را «آکسیوم» می نامند که در زبان فارسی، به «اصل موضوع» معروف اند.
• معمای اصل پنجم اقلیدس
در طول بیش از دو هزارسال، دانشمندان گمان می کردند که هندسه ای جز هندسه اقلیدسی وجود ندارد. براساس این تصور، ریاضیدانان تلاش می کردند پوستولاهای اقلیدس را از دیگر اصل های موضوع نتیجه بگیرند. تغییر یافته پوستولای پنجم اقلیدس به وسیله «پولی فر» چنین می گوید: از یک نقطه بیرون از یک خط راست، نمی توان دو خط راست موازی با خط راست مفروض رسم کرد.ولی همه تلاش ها برای اثبات این اصل موضوع ناکام ماند.
ریاضیدانان ایرانی از جمله فضل حاتم نیریزی وعمر خیام، در این راه کوشیدند؛ ولی نتیجه این شد که اصل موضوع دیگری را به جای اصل موضوع اقلیدس قرا دادند. خیام در کتاب خود که به این موضوع اختصاص دارد، چهارضلعی های دو قائمه متساوی الساقین را مطرح می کند. او از چهارضلعی هایی صحبت می کند که دو ضلع رو به رو با هم برابر وبر قاعده عمود باشند.بعد ابتدا ثابت می کند، دو زاویه دیگر این چهارضلعی باهم برابرند وبا جانشین کردن اصل دیگری به جای پوستولای پنجم اقلیدس،حاده یامنفرجه بدون دو زاویه دیگر را رد می کند. طرح خیام به وسیله نصیرطوسی به کشورهای اروپایی می رود. از جمله ساکری ریاضیدان ایتالیایی، با طرح همان چهارضلعی ها تلاش می کند اصل موضوع اقلیدس را ثابت کند؛ ولی به نتیجه ای نمی رسد.
دسته بندی | ریاضی |
بازدید ها | 6 |
فرمت فایل | doc |
حجم فایل | 619 کیلو بایت |
تعداد صفحات فایل | 38 |
هندسه 2
فصل اول:
1) اصولی از خط راست:
الف) یک خط شامل مجموعه ای از نقاط است که می توان گفت هر خط شامل حداقل دو نقطة متمایز است.
ب) دو خط راست متمایز حداکثر یکدیگر را در یک نقطه قطع می کنند.
ج) هر دو نقطه متمایز حداقل بر یک خط قرار دارند.
د) بین هر دو نقطه متمایز از یک خط راست می توان نقطه ای متمایز از آن دو بدست آورد.
2) اصولی از صفحه:
الف) صفحه مجموعه ای است از نقاط و هر صفحه حداقل شامل 3 نقطه است که بر یک استقامت نمی باشند.
ب) بر هر سه نقطه غیرواقع بر یک خط راست یک صفحه می گذرد.
ج) اگر هر دو نقطه از خطی، در یک صفحه باشند تمام نقاط این خط نیز در این صفحه است.
3) فضا: مجموعه ای نامتناهی شامل کلیه نقاط است.
4) تعریف: تعریف یعنی شناساندن یک چیز یا یک شیء بوسیله مشخصات لازم برای شناساندن. تعریف باید جامع و مانع باشد.
5) تعریف نشده ها: آنچه را که با درک و تصورکردن و یا از طریق مشاهده شناخته و بدون تعریف می پذیریم.
6) برهان: رسیدن از یک سلسله گزاره های درست قبلی به گزاره هایی که درستی آن را بر مبنای آنچه قبلاً پذیرفته ایم قبول می کنیم.
7) قضیه: هر گزاره ای که درستی آن نیازمند برهان است.
8) اصل: هر گزاره ای که درستی آن نیاز به برهان ندارد.
9) شکل: هر مجموعه ای از نقاط را یک شکل نامند.
10) نیم خط:مجموعه ای از نقاط یک خط را که از یک طرف محدود و از یک طرف نامحدود باشد.
با n نقطه متمایز در یک راستا n2 نیم خط داریم
11) پاره خط: جزئی از یک خط راست که از دو طرف محدود باشد. مانند پاره خطAB
دسته بندی | ریاضی |
بازدید ها | 7 |
فرمت فایل | doc |
حجم فایل | 67 کیلو بایت |
تعداد صفحات فایل | 11 |
تابع متناوب
تعریف:
تابع f را متناوب گوئیم هرگاه وجود داشته باشد به طوری که:
کوچکترین مقدار مثبت t را در صورت وجود با T نشان داده و به آن دوره تناوب اصلی تابع گوئیم ( و و t بستگی به x ندارد) به عبارت دیگر در تابع متناوب دوره تناوب عبارت است از کوچکترین مقدار مثبت که وقتی به متغیر اضافه شود مقدار تابع فرق نکند.
دورة تناوب روی نمودار: قسمتی از نمودار که بر اساس آن بتوان قسمتهای دیگر را رسم کرد.(الگویی از یک نمودار میباشد)
قرارداد:
هرجا صحبت از دوره تناوب می کنیم منظور دوره تناوب اصلی یا کوچکترین دوره تناوب تابع است.
نکته 1: تابع ثابت متناوب است و هر عدد حقیقی می تواند دوره تناوب آن باشد ولی کوچکترین دوره تناوب (دوره تناوب اصلی) ندارد.
نکته 2: در توابع ثابتی که به طور متوالی و منظم ناپیوسته هستند فاصله دو نقطه انفصال متوالی دوره تناوب اصلی تابع است.
نکته 3:ممکن است مجموع، تفاضل و… دو تابع که هیچکدام متناوب نیستند متناوب باشد.
دسته بندی | ریاضی |
بازدید ها | 6 |
فرمت فایل | doc |
حجم فایل | 12 کیلو بایت |
تعداد صفحات فایل | 14 |
رابطه ریاضی با هوش
با دکتر على آبکار استاد ریاضى و عضو هیأت علمى دانشکده علوم دانشگاه تهران در مورد ریاضى و کاربردش در زندگى و لذت حل مسأله گفت وگویى انجام داده ایم که مى خوانید:
چرا ریاضى مى خوانیم؟ اصلاً ریاضى به چه دردى مى خورد؟
علوم ریاضى در حالت کلى پایه تمام علوم مهندسى است. ریاضى مادر تمام علوم است و به عنوان علم دقیقه مطرح مى شود هر چه علوم دیگر به ریاضى نزدیک باشند مستدل تر و قطعى تر از علومى هستند که از ریاضى دور مى شوند. ممکن است در علوم اجتماعى نظریه هاى مختلفى داشته باشیم که همه نظریه ها بسته به موقعیت هاى گوناگون درست باشند ولى در ریاضى تنها یک نظریه داریم یا درست یا غلط. اغلب تئورى هاى ریاضى ریشه فیزیکى دارند و منشأ و پیدایش آنها در مسائل علمى بوده است.
یعنى تمام فرمول هایى که در تمام این سالها کشف شده و شما زمانى خوانده اید و حالا تدریس مى کنید در مسائل علمى فیزیک و شیمى و اقتصادى کاربرد دارد؟
خیر، گاه مى دانیم که این فرمول ها چه کاربردى دارد و منتها خودمان دیگر نمى توانیم به کاربردشان بپردازیم و گاهى هم فرمول را مى دانیم و آیندگان کاربردش را پیدا مى کنند. اما یک مسأله وجود دارد هیچ علمى مستقیماً به شکوفایى و بارورى نمى رسد مگر این که بخش هایى از ریاضى در آن به کار برده شده باشد. پس ریاضیدان غیر از لذتى که خودش مى برد از روى مفاهیم ریاضى باعث رشد جامعه و تکنولوژى مى شود.
لذت؟
بله، به یک ریاضیدان در حالت حل مسأله لذتى دست مى دهد و او را ارضا مى کند در فلسفه به این حالت لذت حل مسأله مى گویند که افراد دیگر این لذت را درک نمى کنند. این حالت در ریاضى مثل گل کردن طبع شعر شاعرى است که یکباره باعث مى شود شعر بگوید.
تمام کاربردهایى که از ریاضى گفتید کاربردهایى بود که یک ریاضیدان در زندگى حرفه اى از ریاضى مى کند. آیا در زندگى اجتماعى هم از ریاضى استفاده مى شود؟ ریاضى در زندگى اجتماعى هم کاربرد دارد؟
البته، ما نباید از خودمان تعریف کنیم ولى کسى که ریاضیات مى خواند بهتر فکر مى کند و کسى که بهتر فکر مى کند بهتر زندگى مى کند.
پس به خاطر این که بهتر فکر کنیم از اول دبستان تا سال آخر دبستان ریاضى مى خوانیم؟
بله، ریاضى کمک مى کند که بهتر فکر کنیم.
براى بهتر فکر کردن راههاى بهترى هم وجود دارد. چرا شطرنج بازى نمى کنیم که فکرمان باز شود؟
شطرنج حالت خاص دارد. البته بخشى از ریاضیات هم جنبه شطرنج و بازى دارد که به صورت فرم تعمیم گسترش پیدا مى کند و در علوم دیگر استفاده مى شود.
یعنى ریاضى خواندن ما فقط به خاطر این است که بتوانیم بهتر فکر کنیم. یعنى من اگر انتگرال و مثلثات نمى خواندم نمى توانستم فکر کنم؟
خیر، این طور نیست، ریاضى در زندگى روزمره به بالابردن قوه تفکر کمک مى کند. اما کاربرد و استفاده هاى دیگرى هم دارد. فرض کنید بخشى از ریاضیات آمار است. یک متخصص علوم اجتماعى و تربیتى آیا مى تواند منهاى آمار مطالعات خودش را ادامه دهد. پس این طور نیست که فرد همان لحظه از چیزى که مى خواند بهره مند شود. من به عنوان ریاضیدان از علوم اجتماعى - ارتباطات و روانشناسى به یک حداقلى نیازمندم که در زندگى استفاده کنم. شما هم باید حداقلى از ریاضى بدانید ولى کسى نمى گوید: همه باید ریاضیدان شوند.
این حداقل مى تواند در حد چهار عمل اصلى باشد؟ این طور نیست؟
حدود را ما تعیین نمى کنیم. اتفاقاً آنها که حداقل ها را تعیین مى کنند ریاضیدان نیستند. کارشناسان روانشناسى و تعلیم و تربیت در وزارت آموزش و پرورش و وزارت علوم این حدود را تعیین مى کنند. البته این که شما مى گویید در حد چهارعمل اصلى درست نیست همانطور که گفتم حتى محققان علوم اجتماعى و علوم تربیتى هم به یادگیرى آمار احتیاج دارند و از ریاضى استفاده مى کنند. اما نظر ما این است که کمیت و حجم باید کم شود و بیشتر به کیفیت اهمیت داده شود.
گفتید کسانى که ریاضى مى خوانند بهتر فکر مى کنند آیا افراد باهوش ریاضى مى خوانند؟
ریاضى با هوش نسبت مستقیم دارد. یعنى اغلب ریاضیدان ها افراد باهوشى هستند شاید هم خود ریاضى در پروسه پرورش هوش تأثیر مى گذارد اما این بدان معنى نیست که افرادى که تمایلى به یاد گرفتن ریاضى ندارند افراد بى استعداد یا کم هوشى هستند. ریاضى با علاقه هم رابطه مستقیم دارد.
شما در تمام سالهایى که ریاضى مى خواندید به تدریس فکر مى کردید؟ یعنى دلتان مى خواست ریاضى بخوانید که آن را به دیگران تدریس کنید؟
شغل آرمانى براى یک دانشجوى ریاضى گرفتن جاى اساتید سابقش است و آرمانى تر این که موفق به کشف فرمول یا حل مسأله اى شود که اسمش در کتابها ماندگار شود. من به اولین آرزویم رسیده ام و حالا به آرزوى دوم فکر مى کنم
دسته بندی | ریاضی |
بازدید ها | 6 |
فرمت فایل | doc |
حجم فایل | 20 کیلو بایت |
تعداد صفحات فایل | 14 |
پژوهش در مورد آموزش ریاضی
مقدمه :
تفکر درباره میزان توانایی افراد برای یادگیری چیزی نیست . اما بسیاری یافته های پژوهشی جدید نشان داده اند توانایی ارتباط دادن اطلاعات جدید با دانش پیشین برای یادگرفتن حیاتی است . درک و فهم و یادسپاری یا یادگیری موضوعی که کاملا ناد آشناست امکان پذیر نیست . برای درک و فهم تکلیفی که در دست است . داشتن مقداری دانش پیشین ضروری است . امنا داشتن دانش پیش نیاز هم برای اطمینان از رسیدن به نتایج مناسب کافی نیست . بلکه افراد باید دانش پیشین خود را فعال کنند تا بتوانند از آن برای درک و فهم و یادگیری استفاده کنند. پژوهش نشان می دهد دانش آموزان همیشه هم نمی توانند بین مواد جدیدی که آموزش می بینند و آنچه پیشض تر می دانند ، ارتباط بر قرار کنند . همچنین ، وقتی معلمان ره دانش پیشین یادگیرنده توجه جدی می کنند و آنرا به مثابة نقطة آغازین آموزش به کار می روند ، یادگیری ارتقا می یابد .
در کلاس درس
معلمان می توانند به دانش آموزان برای فعال کردندانش پیشین کمک کنند تا آن را برای انجام تکلیفی که در دست دارند ، به کار ببرند ، این کار به شیوه های متعددی قابل انجام است :
• برای اطمینان از آن دانش آموزان پیشین ضروری را دارند و نیز برای فعال کردن آن ، معلمان می توانند محتوای درس را قبل از تدریس به بحث بگذارند .
• اغلب، دانش پیشین دانش آموزان کامل نیست یاباورهای نادرست و بدفهمی های بارزی در آن وجود دارد . بنابراین برای معلمان ، تنها دانتن این که دانش سآموزان بایددانشی در بارة موضوعی که ارائه می شود داشته باشند ، کافی نیست ، بلکه لازم است ، به تفصیل دانش پیشین دانش آموزان را بررسی کنند تا باورهای نادرست و بدفهمی ها را بشناسند .
• امکان دارد معلمان نیاز داشته باشند ه عقب برگردند تا مواد پیش نیاز فهم را فراهم آورند ، یا از دانش آموزان بخواهند برای آماده شدن کارهایی را انجام دهند .
• معلمان می توانند به شیوه ای سؤال بپرسند که به دانش آموزانکمک کند بین آنچه می خوانند آنچه پیش تر می دانستند ، ارتباطی بیابند .
• معلمان تأثیرگذار می توانند برای برقراری ارتباطات و فهم روابط به دانش آموزان کمک کنند . آنان می تواننداین کار را از طریق تهیة الگو یا چارچوبی انجام دهند که دانش آموزان را قادر برای بهبود عملکرد ، آن را به مثابه تکیه گاهی تلاش هایشان به کار گیرند .
اهداف فصل
1- کسب آگاهی دربارة چیستی یادگیری از طریق همیاری ،
2- آشنایی با ساختار یادگیری از طریق همیاری،
3- آشنایی را رش های یادگیری از طریق همیاری ،
4- تبیین مزیت های استفاده از گروه های همیار در بادگیری ،
5- مقایسة یادگیری از طریق همیاری و یادگیری تسلط یاب ،