دسته بندی | برق |
بازدید ها | 11 |
فرمت فایل | doc |
حجم فایل | 4562 کیلو بایت |
تعداد صفحات فایل | 150 |
موتور سنکرون
فصل اول
مبانی مدارهای الکتریکی
اجزا واحدها در سیستم SI به صورت اعشاری است. برای مشخص کردن توان های ده، پیشوندهای خاصی همراه واحدهای این سیستم به کار می رود. این پیشوندها عبارتند از:
پیکو (P و 12-10) کیلو (K و 103)
نانو (n و 9-10) مگا (M و 106)
میکرو گیگا (G و 109)
میلی سانتی (C و 2-10)
1-2 : کمیات اساسی الکتریکی
1-2-1- بار
می دانیم که در یک اتم، الکترون بار منفی و پروتون بار مثبت دارد و بار یک الکترون با بار یک پروتون برابر است. واحد بار الکتریکی کولن (C) است. یک کولن برابر بار 108*24/6 الکترون است. یعنی یک الکترون دارای بار C 19-10*6/1 است.
1-2-2- جریان
بار متحرک نشان دهنده جریان است. جریان در یک مسیر مجزا، مثلاً یک سیم فلزی، علاوه بر مقدار، جهت نیز دارد. جریان، آهنگ عبور بار از یک نقطه در یک جهت خاص است.
پس از مشخص کردن یک جهت مرجع، کل باری که از زمان t=0 به بعد از یک نقطه مرجع در آن جهت عبور کرده را q(t) می نامیم. آهنگ عبور بار در لحظه t برابر است. با کاهش فاصله میتوان نوشت:
(1-1)
جریان، برابر آهنگ زمانی عبور بار مثبت از یک نقطه مرجع در یک جهت مشخص است. جریان را با i یا I نشان میدهیم. بنابراین:
(1-2)
واحد جریان آمپر (A) است. یک آمپر، انتقال بار با آهنگ 1 کولن بر ثانیه را نشان میدهد. برای به دست آوردن باری که در فاصله t0 تا t منتقل شده، میتوان از رابطه 1-3 استفاده کرد:
(1-3)
1-2-3- ولتاژ
هر عنصر را به صورت یک شکل دارای دو پایانه یا دو سر نشان میدهیم. (شکل 1-1)
فرض کنید جریانی به پایانه A عنصر مداری شکل 1-1 وارد شده و از پایانه B خارج میشود. برای عبور این جریان، باید مقداری انرژی صرف شود. در این صورت
می گوییم بین دو پایانه B , A ، اختلاف پتانسیل یا ولتاژ الکتریکی وجود دارد. بنابراین ولتاژ روی یک عنصر، معیاری از کار لازم برای عبور بار از طریق آن است. ولتاژ یا اختلاف پتانسیل بنابر تعریف عبارت است از کار انجام شده برای انتقال بار q از یک نقطه به نقطه دیگر. یعنی:
(1-4)
که در آن v اختلاف پتانسیل بر حسب ولت (v)، w کار انجام شده و q بار الکتریکی است.
1-2-4- توان الکتریکی
توان آهنگ مصرف انرژی است. اگر برای انتقال 1 کولن بار از یک عنصر، 1 ژول انرژی مصرف شود، توان لازم برای انتقال یک کولن بار در ثانیه، یک وات خواهد بود. رابطه توان را میتوان به صورت رابطه 1-5 نوشت:
(1-5) p=v .i
که p توان الکتریکی بر حسب وات (w) است. یعنی یک وات برابر یک ولت آمپر است.
1-2-5- مقاومت
هر عنصر مداری که در آن انرژی تلف شود، معمولاً ولتاژ دو سرش با جریان گذرنده از آن متناسب است. یعنی:
(1-6) V=RI
که R ثابت تناسب است و مقاومت آن عنصر میباشد. واحد مقاومت اهم است و رابطه 1-6 قانون اهم نام دارد.
شکل 1-2 علامت مداری یک مقاومت را نشان میدهد.
در یک مقاومت، جریان از نقطه با پتانسیل بیشتر به نقطه با پتانسیل کمتر جاری می گردد. معمولاً پتانسیل بیشتر را با علامت + و پتانسیل کمتر را با علامت – نشان می دهند. مقاومت، یک عنصر مصرف کننده انرژی الکتریکی است. یعنی توان در آن تلف میشود. توان تلف شده در یک مقاومت از رابطه 1-7 به دست میآید.
فهرست
عنوان صفحه
1-1: مقدمه............................................................................................................
1-2: کمیات اساسی الکتریکی................................................................................
1-2-1: بار............................................................................................................
1-2-2: جریان.......................................................................................................
1-2-3: ولتاژ.........................................................................................................
1-2-4: توان الکتریکی...........................................................................................
1-2-5: مقاومت.....................................................................................................
1-3: اتصال سری مقاومتها.......................................................................................
1-4: اتصال موازی مقاومتها................................................................................
1-5: منابع.............................................................................................................
1-5-1: منبع ولتاژ.................................................................................................
1-5-2: منبع جریان...................................................................................................
1-6: قانون ولتاژ کیرشهف (KVL).......................................................................
1-7: مقسم ولتاژ...................................................................................................
1-8: مقسم جریان.................................................................................................
1-9: مدارهای مختلط............................................................................................
1-10: زمین مدار..................................................................................................
مسائل فصل 1.......................................................................................................
فصل دوم: جریان متناوب..........................................................................................
2-1: موج سینوسی................................................................................................
2-2: فرکانس.........................................................................................................
2-3: مقدار متوسط....................................................................................................
2-4: قوانین اهم در مدارهای AC.........................................................................
2-4-1: فاز............................................................................................................
2-5: فازور............................................................................................................
2-6: اعداد مختلط..................................................................................................
2-7: ساده کردن اعداد مختلط..............................................................................
2-8: موج پالس......................................................................................................
2-9: موج مثلثی.....................................................................................................
مسائل فصل دوم...................................................................................................
فصل سوم روشهای تحلیل مدار...........................................................................
3-1: تبدیل منابع....................................................................................................
3-2: قضیه جمع آثار.............................................................................................
3-3: روش ولتاژ گره ها.......................................................................................
3-4: روش جریان مش.........................................................................................
3-5: روش تونن....................................................................................................
3-6: روش نورتن.................................................................................................
3-7: انتقالی حداکثر توان به بار............................................................................
مسائل فصل 3.......................................................................................................
فصل چهارم: وسایل اندازه گیری.........................................................................
4-1: ولتمتر...........................................................................................................
4-2: آمپرمتر.........................................................................................................
4-3: اهم متر.........................................................................................................
4-4: تست کردن قطعات الکتریکی.........................................................................
4-4-1: سیم..........................................................................................................
4-4-2: مقاومت.....................................................................................................
4-4-3: سلف.........................................................................................................
4-4-4: خازن........................................................................................................
4-5: اسیلسکوپ....................................................................................................
مسائل فصل چهارم...............................................................................................
فصل پنجم: خازن و سلف در جریان مستقیم........................................................
5-1: خازن............................................................................................................
5-2: خازن در جریان مستقیم...............................................................................
5-3: شارژ خازن..................................................................................................
5-4: دشارژ خازن................................................................................................
5-5: به هم بستن خازنها.......................................................................................
5-6: سلف.............................................................................................................
5-7: سلف در جریان مستقیم................................................................................
5-8: تغییرات جریان در سلف...............................................................................
5-9: به هم بستن سلف ها.....................................................................................
مسائل فصل پنجم..................................................................................................
فصل ششم: خازن و سلف در جریان متناوب.......................................................
6-1: مدارهای RC.................................................................................................
6-1-1: مدارهای RC موازی ...................................................................................
6-2: مدارهای RL.................................................................................................
6-2-1: مدار RL سری.........................................................................................
6-2-2: مدار RL موازی.......................................................................................
مسائل فصل ششم.................................................................................................
فصل هفتم: مدارهای RLC....................................................................................
7-1: RLC سری........................................................................................................
7-1-1: فرکانس تشدید مدار سری.......................................................................
7-2: RLC موازی.................................................................................................
7-2-1: فرکانس تشدید در RLC موازی..............................................................
7-3: پهنای باند.....................................................................................................
مسائل فصل هفتم..................................................................................................
فصل هشتم ترانسفورماتورها....................................................................................
8-1: اندوکتانس متقابل..........................................................................................
8-2: توان..............................................................................................................
8-3: بازتاب امپدانس.............................................................................................
مسائل فصل هشتم................................................................................................
فصل نهم: سیستم های چند فازه...........................................................................
9-1: سیستم تک فاز..............................................................................................
9-2: سیستم سه فاز.............................................................................................
9-3: توان در مدارهای سه فاز.............................................................................
مسائل فصل نهم:.......................................................................................................
فصل 10: موتور و ژنراتورهای DC.....................................................................
10-1: موتورهای DC...........................................................................................
10-2: معرفی موتورهای DC................................................................................
10-3: انواع موتورهای DC...................................................................................
10-4: مدار معادل موتورهای DC........................................................................
10-5: موتورهای DC تحریک مجزا و موازی......................................................
10-6: مشخصه پایانه ای موتور DC موازی........................................................
10-7: معرفی ژنراتورهای DC.............................................................................
10-8: ژنراتور تحریک مجزا.................................................................................
10-9: مشخصات پایانه ای ژنراتورهای تحریک مجزا.........................................
10-11: کنترل ولتاژ پایانه ای...............................................................................
10-12: ژنراتور dc موازی...................................................................................
10-13: موتورهای سنکرون.................................................................................
10-14: مدار معادل موتور سنکرون....................................................................
10-15: موتور سنکرون از دید میدان مغناطیسی.................................................
10-16: کار موتور سنکرون در حالت پایدار........................................................
10-17: سختی مشخصه گشتاور در سرعت موتور سنکرون..............................
10-18: اثر تغییرات بار روی موتور سنکرون......................................................
10-19: نمودار فیزوری ژنراتور سنکرون...........................................................
10-20: ژنراتور سنکرون.....................................................................................
10-21: ساختمان ژنراتور سنکرون......................................................................
10-22: سرعت و چرخش ژنراتور سنکرون........................................................
10-23: اندازه گیری پارامترهای مدل ژنراتور سنکرون......................................
10-23-1: نسبت اتصال کوتاه..............................................................................
10-24: اثر تغییرات جریان میدان بر موتورهای سنکرون...................................
10-25: موتور سنکرون کم تحریک و موتور سنکرون پر تحریک.......................
مسائل.........................................................................................................................
دسته بندی | برق |
بازدید ها | 15 |
فرمت فایل | doc |
حجم فایل | 23116 کیلو بایت |
تعداد صفحات فایل | 101 |
کاربرد ماهوراه ( انتشار امواج ) و ارتباط با سکو های دریایی
انتشار امواج ماوراء افق
کلیات
مقدمه
این فصل اختصاص به انتشار امواج ماوراء افق با استفاده ا لایه تروپوسفر در ارتفاعات چندین کیلومتری سطح زمین دارد. بطوریکه در فصول قبل بیان شد افق رادیویی یک فرستنده که آنتن آن در ارتفاع ht از سطح زمین قرار دارد با فرض آنکه از کلیه ارتفاعات مسیر صرفنظر و فقط انحنای سطح زمین مدنظر باشد از رابطه زیر تبعیت می نماید.
که بعنوان مثال برای شرایط هوای استاندارد 33/1=K و ارتفاع 30 متری آنتن این فاصله به حدود 6/22 کیلومتر بالغ می گردد. برای آنکه بتوان امواج را مستقیماً و بدون نیاز به ایستگاههای واسط به فواصلی دورتر از افق رادیویی ارسال داشت از تکنیکهای خاص می بایست بهره گرفت که یکی از مهمترین آنها با کارآئی مناسب بهره گیری از ارتباطات تروپواسکاتر می باشد که در این فصل به توضیحاتی در خصوص آن پرداخته می شود.
روش های ارتباطات ماوراء افق
روش های ارسال و دریافت امواج رادیویی با استفاده از هاپ های بلند و از طریق ارتباطات رادیویی ماورای افق عبارتند از:
ارتباطات HF و MF
در این روش از شکست و بازتاب برای ارسال امواج تا فواصل هزاران کیلومتر استفاده می شود. پهنای باند متوسط مجاز ارسال در حد یک یا دو کانال تلفنی است. محدودیت اساسی دیگری که برای استفاده از زیر باندهای این طیف وجود دارد وابستگی اینگونه ارتباطات به ساعت شبانه روز و شلوغی آن می باشد. این روش بویژه قبل از مطرح شدن ارتباطات ماهواره ای بطور وسیعی استفاده می گردید.
اسکاتر یونسفری
این روش از اسکاترینگ امواج رادیویی در لایه یونسفر (یک پدیده مشابه تروپواسکاتر) بهره می برد و در فرکانس های VHF تا MHz 100 می تواند هاپ هائی تا چندین هزار کیلومتر را تشکیل دهد.
پهنای باند متوسط در این روش خیلی محدود است، به طوریکه فقط امکان ارسال چند کانال تلفنی وجود دارد. همچنین محدودیت های ناشی از محوشدگی سبب شده است که از این روش بندرت استفاده شود.
ترکش های شهابی
در این روش از انعکاسات حاصل از دنباله های یونیزه شده شهابها که همیشه در لایه های بالای اتمسفر وجود دارند بهره گیری می شود. به خاطر فیزیک پدیده، پیوستگی ارسال تأمین نگردیده و امواج باید در قالب ترکشها ارسال شوند. این پدیده در حال مطالعه است و در حال حاضر مورد استفاده قرار نمی گیرد.
تروپواسکاتر
این روش که موضوع این مطالب را تشکیل می دهد، ارسال تا بیش از صد کانال تلفنی را با هاپ هائی تا صدها کیلومتر امکان پذیر می نماید. این فن آوری در برخی مواقع راه حل مناسبی برای شبکه های محلی با هاپ های طولانی قلمداد می گردد.
دیفرکشن (پراش)
این تکنیک، ارسال تعداد زیادی کانال تلفنی را تا فواصل کوتاهی فراتر از افق ممکن می سازد. این پدیده در ارتباطات سیار و در باندهای UHF/VHF مورد استفاده
می باشد .
ماهواره ها
مناسب ترین روش برای هاپ های خیلی طولانی (مثلاً ارتباطات بین قاره ای) است، اما جایگزینی شبکه های ماورای افق با آن بعضاً به خاطر هزینه و عدم ظرفیت کافی مقرون به صرفه نیست.
جایگاه فعلی ارتباطات تروپواسکاتر
با وجود اینکه امروزه ارتباطات مایکروویو و ماهواره در سطح وسیعی گسترش یافته، ارتباطات تروپواسکاتر هنوز در جهان دارای اهمیت هستند. بطور مثال طول یک هاپ در لینک های تروپو از لینک های ارتباطات مایکروویو بلندتر است و به Km 600~500 می رسد که خود دلیل خوبی برای اهمیت این نوع ارتباط می باشد.
ظرفیت و کیفیت ارتباطات تروپو نسبت به ارتباطات MF/HF در وضعیت بهتری قرار دارد، بطوریکه سیستم های تروپو قادرند بیش از 60 کانال صوتی دیجیتال یا بیش از 300 کانال صحبت آنالوگ و یا کانال تلویزیون تک رنگ را انتقال دهند (مسائل فنی برای ارسال کانال تلویزیون رنگی نیز مورد بررسی قرار گرفته است)
بعلت باریک بودن اشعه رادیویی در ارتباط تروپو، امنیت، بقا و قابلیت ضد پارازیت (اغتشاش) در مقایسه با مخابرات ماهواره در سطح بالاتری قرار دارد. برای لینک های ارتباطی با مجموع طول مساوی، هزینه اولیه و هزینه نگهداری آن در مقایسه با ارتباطات مایکروویو کمتر است. حتی در مقایسه با خطوط اجاره ای ماهواره هزینه هر کانال صوتی وقتی که گستره ارتباط تروپو کمتر از 400 کیلومتر باشد بمراتب پایین تر است. از طرفی تعداد دستگاههای مورد نیاز برای ارتباط تروپو از ارتباط مایکروویو با فاصله زیاد کمتر است، بنابراین پرسنل کمتر لازم بوده و امنیت سایت ها به راحتی تأمین می شود.
پهنای باند در ارتباط تروپو حدود صد برابر پهنای باند در ارتباط دنباله شهابی است. امنیت ارتباطات تروپواسکاتری نسبت به ارتباطات ماهواره ای و نیز شبکه های تلفن عمومی متفاوت می باشد. بنابراین ارتباطات تروپو بعنوان یک وسیلۀ ارتباطی کارآمد و مطمئن در برخی نواحی از قبیل بیابان، باتلاق، جنگل، جزایر و نواحی پرجمعیت دوردست و پراکنده می تواند پیشنهاد شود.
ارتباطات تروپو همچنین به عنوان یک روش ارتباطی قابل رقابت برای ایجاد لینک های ارتباطی در میدان های نفتی دور از ساحل می تواند مطرح شود. در انتشار تروپواسکاتری لکه های خورشیدی، طوفان های مغناطیسی و انفجارهای هسته ای اثری ندارند، از این رو برای ارتباطات نظامی در جنگ های هسته ای مناسب هستند.
تجهیزات تروپو قادرند اطلاعات تلفن دیجیتال، تلکس، فاکس و تصویر را انتقال دهند و نیز می توان آنها را در سنجش از راه دور، اندازه گیری از راه دور، تلویزیون تک رنگ و انتقال دیتا (با تغییرات در تجهیزات) بکار گرفت.
مشخصات و کاربردهای اصلی
مشخصات اصلی
مشخصه های اصلی سیستم های ترواسکاتر را می توان در موارد زیر خلاصه نمود:
کاربردهای اصلی
بلحاظ کاربردی، داشتن هاپهای بلند را بعنوان جالبترین مشخصه ارتباطات تروپواسکاتر می توان نام برد. این هاپهای بلند نیازی به تکرار کننده های واسطه نداشته و مسافتهائی بزرگتر از لینک های مایکروویو با دید مستقیم رادیویی را تأمین می نمایند. این خاصیت بویژه در مواردی که بلحاظ مسائل طبیعی مشکلاتی از نظر ارتباطی وجود دارد همچون موارد زیر مفید است:
سیستم های تروپواسکاتر قادرند سرویس های تلفنی، فاکس، تصویر، سنجش از راه دور[2] و تلویزیون تک رنگ را تأمین کنند و با بهره گیری از تجهیزات اصلاح خطا برای تبادل دیتا مورد استفاده قرار گیرند. این سیستم ها جهت برقراری لینک های محرمانه با اهداف خاص مانند ترانک های ارتباطی نظامی با ظرفیت کم و یا متوسط در لینک های تروپوی تاکتیکی کاربرد داشته و علاوه بر آن با شبکه های سرویس دیجیتالی مجتمع، ISDN[3] سازگار شده و بعنوان یک وسیله ارتباط بین دو نقطه در سیستم های دفاع هوائی خودکار بکار می روند.
مزایای سیستم های تروپواسکاتر
مهمترین فواید سیستم های ترواسکاتر بصورت زیر خلاصه می شوند:
10. مصونیت بالا، در برابر قطع شدن مسیر موج[4] ، به دلیل استفاده از آنتن هائی با پهنای اشعه[5] بسیار باریک
11. انتشار تروپوسفریک بعلت مصونیت نسبی در مقابل اثرات منفی لکه های خورشیدی[6] ، طوفان های مغناطیسی[7] و انفجارهای هسته ای[8] برای ارتباطات نظامی در جنگ های هسته ای مناسب هستند.
12. هزینه زیاد برای ایجاد یک سیستم رادیویی تروپواسکاتری در مقایسه با فواید این نوع سیستم ها می تواند قابل چشم پوشی باشد.
انتشار امواج تروپوسفر
تروپوسفر پایین ترین لایه اتمسفر است که در آن معمولاً با افزایش ارتفاع، دما کاهش می یابد. گسترش این ناحیه از سطح زمین تا ارتفاع 9 کیلومتر در قطب های زمین و 17 کیلومتر در استوا می باشد. در تروپوسفر تغییرات دما، فشار و رطوبت مثل ابر و باران بر انتشار امواج رادیویی از یک نقطه به نقطه دیگر تأثیر می گذارد.
یونیزاسیون گازهای اتمسفر در داخل تروپوسفر قابل چشم پوشی است ولی در ارتفاع 60 تا 1000 کیلومتری وجود این یون ها کاملاً محسوس است. این لایه ها ناحیه یونسفر را تشکیل می دهند که تأثیر قابل توجهی روی امواج رادیویی در فرکانسهای زیر 40 مگاهرتز می گذارد. در فرکانسهای بالای 40 مگاهرتز مسائل زیر مطرح می باشند:
تمام این مکانیزم ها می توانند انرژی را به ماورای افق منتقل نمایند و منجر به تداخل بین یک مسیر رادیویی و مسیر دیگر بشوند. بازتاب، بیشتر، فرکانس های بین 30 تا 1000 مگاهرتز را تحت تأثیر قرار می دهد و پدیده داکتینگ، بیشتر در فرکانس های بالای 1000 مگاهرتز اتفاق می افتد. خوشبختانه اتفاق اخیر خیلی به ندرت روی زمین رخ می دهد و غالباً داکت ها در بالای دریاها وجود دارند.
بعلاوه تغییرات در ضریب شکست متناسب با ارتفاع سبب خم شدن امواج رادیویی مخصوصاً در وسعت افق رادیویی ماورای افق اپتیکی می شود. این پدیده در زوایای عمودی کوچک برای تمام فرکانس ها می تواند مهم باشد.
انتشار رادیویی، جدای از اثرات ضریب شکست، در فرکانس های بالای 3 گیگاهرتز در حضور باران های سنگین ممکن است شدیداً تحت تأثیر واقع شود، و در 15 گیگاهرتز و بالاتر تضعیف امواج به سبب اکسیژن و بخار آب در هوا اهمیت پیدا می کند. بعلاوه تضعیف بوسیله باران و گازهای اتمسفر موجب انتشار یک نویز حرارتی معادل خواهد شد.
علاوه بر موارد فوق اثرات زمین غالباً از اهمیت قابل توجهی برخوردار بوده و در فرکانس های بیشتر از 30 مگاهرتز حضور تپه ها و شکل آنها اثرات مهمی روی میزان انرژی میدان انتشار یافته در ماورای افق دارد. در فرکانس های بالاتر ساختمان ها و دیگر موانع اثرات قابل ملاحظه ای، بواسطه پراش و پراکندگی[9] و مکانیزم های بازتاب مستقیم، زمانیکه طول موج در مقایسه با ابعاد مانع کوچک باشد، بجای می گذارند.
هندسه مسیر امواج تروپواسکاتر
مقدمه
هندسه مسیر تروپواسکاتر نقش مهمی را در محاسبات طراحی بازی می کند و شامل پارامترهای مورد نیاز برای پیش بینی افت و اعوجاج مسیر می باشد. تعریف پارامترهای هندسی و فرمول اصلی مربوط به این پارامترها در این بخش مطرح خواهد شد. ابتدا به اطلاعات پایه و اساسی پرداخته و سپس به تعریف پارامترها و نیز برخی روابط اضافی اشاره می گردد.
1. Antenna Space Diversity
2. Remote Sensing
3. Integrated Services Digital Network, ISDN
1. Interception
2. Beam Width
3. Sun Spots
4. Magnetic Storms
5. Nuclear Explosion
1. Scattering
دسته بندی | برق |
بازدید ها | 24 |
فرمت فایل | doc |
حجم فایل | 435 کیلو بایت |
تعداد صفحات فایل | 100 |
پایان نامه PLC
خلاصه:
Plc مخفف عبارت programming logic control میباشد.این سیستم وسیله ایاست که متناسب بابرنامه ای که دریافت میکند وظیفه ای خاص را اجرا میکند به عبارت دیگر plc نوعی کامپیوتر است که برنامه ای خاص را اجرا میکند .
با ظهور plc تجهیزات و قطعات استفاده شده در کنترل فرایند های صنعتی و خطوط تولید تغییر نموده و مدار های رله کنتاکتوری و سخت افزاری حالت جامد کم کم جای خود را به کنترل کننده های قابل برنامه ریزی یعنی plc دادند .
امروزه در طراحی کنترل کننده خطوط تولید و فرایند های صنعتی استفاده از مدار های رله کنتاکتوری منسوخ گردیده و در اگثر کارخانه ها و مراکز صنعتی از سیستم plc اسنفاده میشود.
بدون تردید plc مهمترین و پر کاربرد ترین وسیله اتوماسیون در صنایع مدرن امروزی است .
در ماشین ها و خطوط تولید جدید کمتر موردی را میتوان یافت که از کنترل کننده های منطقی قابل برنامه ریزی استفاده نشده باشد .
در حقیقت این وسیله بسیار قابل انعطاف که خود یک کنترل کننده کامل است به عنوان قطعه ای برنامه ریز در صنایع گوناگون کاربرد وسیعی یافته است به گونه ای که با پیشرفت تکنولوژی و حضور اتوماسیون در عرصه صنعت در طراحی کنترل کننده ها و مدار های فرمان خطوط تولید و فرایند های صنعتی استفاده از مدارهای فرمان قدیمی منسوخ گردیده و در اکثر مراکز صنعتی از کنترل کننده ها ی منطقی قابل برنامه ریزی استفاده میگردد.
پیشگفتار:
قرن بیستم قرنی است گسترده بین دو انقلاب .انقلابی در آغاز قرن و انقلابی در پایان آن .انقلاب اغازین ظهور تولید انبوه و پایان گرفتن عصر تولید دستی و انقلاب پایانی همانا ظهور تولید ناب و خاتمه یافتن تولید انبوه است . اکنون جهان در استانه عصر جدید به سر میبرد عصری که
در ان دگرگونی شیوه های تولید مصنوعات و ساخته های بشر چهره زندگی را یکسره دگرگون خواهد کرد .
امروزه با رشد شگفت آور دانش فنی بشر و افزایش تعداد تولید کنندگان مناطق مختلف جهان سهم بیشتر بازار های جهان از ان کشور ها و شرکت های است که در خصوص کیفیت نواوری و تنوع محصول و... حرف های تازه ای را برای گفتن دارند . اکنون تولید کنندگانی در جهان ظهور کرده اند که میتوانند با نیمی از نیروی کار و سرمایه و میزان مهندسی و مکان وزمان که برای تولید کنندگان انبوه قدیمی لازم است محصولاتی به جهان عرضه کنند که از نظر کیفیت و جنبه های نواورانه بسی برتر باشد .اکنون دیگر ان انبوه سازان که زمانی الگو و قبله آمال دیگر تولید کنندگان بودند پس از دهها سال سروری به غیر از عقب نشینی و از دست ندادن سهم بازار خود و یا تغییر کلی شیو های خود راه دیگری ندارند بنابراین جا دارد که بپرسیم تولید کنندگان محصولات برتر چگونه توانسته اند در مقابل تولید کنندگان انبوه قدیمی با وجود یک قرن تجربه در ساخت تولید و تجارت این میان قد علم کنند و با نیمی از سرمایه و نیروی فکری و کاری آنها و بهروری و کیفیت خود را چنین ارتقا بخشند ؟
امروزه صنعت کشور بیش از هر چیز نیازمند نو سازی و به کار گیری نگرش های نوین صنعتی میباشد روش های کهنه و مرسوم در صنعت کشور کاهش بهروری و افت کیفیت را به ارمغان آورد ه است و این در حالی است که مرز های صنعت به سرعت در حال گسترش است و اصرار بر روش های سنتی فاصله ایران را با دنیای صنعتی افزایش خواهد داد . از طرف دیگر ورود صنعت بدون دانش فنی چیزی از این فاصله نخواهد کاست . اکنون اگر چه صنعت ایران گام هایی به سوی توسعه استفاده از اتوماسیون و سیستم های مدیریت صنعتی متکی براین دانش برداشته است اما متاسفانه انتقال دانش فنی در این عرصه با کندی صورت میگیرد .
مقدمه:
امروزه با پدیدار شدن ریز پردازنده ها و پیشرفت فن اوری حالت جامد در عرصه علم و تکنولوژی که بی شک ان را میتوان بزرگترین پدیده در علم الکترونیک دانست چهره محیط های صنعتی به کلی دگرگون شده است .
Plc نیز مولود این پدیده یعنی ظهور ریز پردازنده ها بوده است .بدن تردید plc مهمترین و پر کاربرد ترین وسیله اتوماسیون در صنایع مدرن امروزی است در ماشین ها و خطوط تولید جدید کمتر موردی را میتوان یافت که از کنترل کننده های منطقی قابل برنامه ریزی استفاده نشده باشد در حقیقت این وسیله بسیار قابل انعطاف که خود یک کنترل کننده کامل است به عنوان قطعه ای برنامه پذیر کاربرد وسیعی یافته است به گونه ای که با پیشرفت تکنولوژی و حضور اتوماسبون در عرصه صنعت در طراحی کنترل کننده ها و مدارات فرمان خطوط تولید و فرایند های صنعتی استفاده از مدارات فرمان قدیمی منسخ گردیده و در اکثر مراکز صنعتی از کنترل کننده های منطقی قابل برنامه ریزی استفاده میگردد.
اکنون برای توجه بیشتر به تفاوت ها و مزایای plc نسبت به مدارات کنتاکتوری موارد زیر را بر میشماریم :
یابی کرد
کاربرد های plc در صنایع مختلف :
امروزه کاربرد های فراوانی از plc در پروسه های مختلف صنعتی به چشم میخورد که خود نشانگر اهمیت فراوان plc در صنعت است . از جمله این استفاده ها میتوان به موارد زیر اشاره کرد :
شرح مختصری بر رساله:
Plc سیستمی است که متناسب با برنامه ای که دریافت میکند وظیفه ای خاص را انجام میدهد امروزه دز طراحی کنترل کننده های خطوط تولید و فرایند های صنعتی از ان استفاده میشود به عنوان مثال در سالن پرس 3 ایران خودرواتوماسیون خط شولر ساخت شرکت زیمنس و از نوع s7 و مدل cpu416-2dp که از پیشرفته ترین نوع plc هابشمار میرود مورد استفاده قرار گرفته است
PLC در یک نگاه:
programmable logic controller :PLC که با نام programmable controller نیز شناخته می شودکنترل کننده برنامه پذیری است که از خانواده کامپیوتر ها بشمار می آید .این کنترل کننده که عمدتا در مقاصد صنعتی بکار می رود ورودی ها را می گیرد و بر اساس برنامه ای که در حافظه آن نوشته شده خروجی هایلازم را برای ماشین یا فرایندی که تحت کنترل آن است صادر می نما ید .
بنا بر این در نگاه اول PLC از سه قسمت اصلی یعنی مدول های ورودی ،CPUو مدول های خروجی تشکیل شده است. مدول ورودی سیگنالهای متنوع دیجیتال یا آنالوگ را ازF IELD قبول میکند و سپس آنها را به سیگنال های منطقی (0و1)که برای CPU قابل پردازش باشد تبدیل می نماید .CPUمطابق با برنامه ای که قبلا کاربر در حافظه آن ذخیره کرده است دستورات کنترلی را اجرا کرده و خروجی لازم را بصورتسیگنال های منطقی به مدول های خارجی می فرستد .این مدول ها سیگنال های مذبور را به فرم دیجیتال یا با تبدیل به آنالوگ به تجهیزات FIELD مانند عملگر ها (ACTUATOR ) ارسال می نماید .
قبل از اینکه PLC در صنعت مورد استفاده قرار گیرد مدار های کنترلی کاملا سخت افزاری بودند این مدارهای بر اساس رله ها طراحی و سپس سیم بندی می شدند .بزرگترین عیب این روش آن بود که کوچکترین تغییری در سیستم کنترل مستلزم تغییر سخت افزار و سیم کشی بود که علاوه بر هزینه زیاد زمان زیادی را نیز برای اجرا نیاز داشت بعلاوهدر هنگام بروز خطا کار عیب یابی این مدار ها چندان ساده نبود.
سیستم جدید یعنی PLC مسایل فوق را به همراه نداشت .به سادگی قابل برنامه ریزی بود و تغییردر سیستم کنترل با تغییر در نرم افزار بر نامه کنترل بسهولت امکان پذیر می شد .
مزیتهای قوق همراه با مزایای دیگر ی چون کوچکترشدن ابعاد سیستم کنترل ،عیب یابی سریعتر ،خرابی کمتر توانایی اجرای فانکشنهای پیچیده ،توانایی تبادل اطلاعات با سیستم های دیگرو....موجب شد که مدارهای رله ای بسرعت میدان را برای حضور PLC خالی کنند .
اولین PLC ها در سال 1968ساخته شدند در دهه 70 قابلیت برقراری ارتباط به آنهااضافه شد در دهه 80 پروتکل های ارتباطی استاندارد شد و بلاخره در دهه90 استاندارد زبانهای برنامه نویسیPLC یعنی استاندارد IEC1131 ارائه گردید
استانداردIEC1131
در سال 1979 یک گروه متخصص در IECکار بررسی جامع PLCها را شامل سخت افزار ،برنامه نویسی و ارتباطات بر عهده گرفت .هدف این گروه تدوین روش های استانداردی بود که موارد فوق را پو شش دهد و توسط سازندگان PLCبکار گرفته شود .این کار حدود 12 سال بطول انجامیدو نهایتا پس ازبحث های موافق و مخالفی که انجام شد استانداردIEC1131شکل گرفت و جنبه های مختلف این وسیله از طراحی سخت افزار گرفته تا نصب ،تست ،برنامه ریزی و ارتباطات آن را زیر پوشش قرار اد.
PLC های مختلف زیمنس
در طبقه بندی محصولات زیمنس PLC هادر زیر مجموعهمحصولات SIMATIC قرار می گیرند .برخی از آنها بصورت COMPACTطراحی و ساخته شده اند به این معنا که منبع تغذیه وcpu ومدول های ورودی و خروجی بصورت یک پارچه در کنار هم بیکدیگر متصل هستند و یک واحد تلقی می شوند و بر خی دیگر به صورت مدولار هستند که بر خلاف نوع compact کاربر میتواند مدول های دلخواه از آن خانواده را بسته به نیاز خود انتخاب و در کنار هم قرار دهد .plc های زیمنس را میتوان به پنج خانواده زیر تقسیم کرد
Simatic s5
این plcها که نسبتا قدیمی هستند انواع مختلف دارند برخی مانند s5-95u به صورت compact بوده و
حوزه عملکرد محدود دارند .برخی دیگر مانند s5-100u وs5-115 مدولار بوده و برای سیستم های کنترلی با ابعاد متوسط بکار می روند برای حوزه های عملکرد وسیع plc های د یگری با نام های s5-135u وs5-155u از این خانواده عرضه شده اند . برنامه نویسی plcهای فوق با نرم افزار step5 انجام میگیرد .
Simatic s7
این plcها بعد از s5 عرضه شده اند و خود به سه خانواده مختلف تقسیم می شوندs7-200بصورت compact بوده و برای سیستم های کنترلی کوچک بکار می رود . s7-300 مدولار است و عملکرد متو سط دارد s7-400 نیز مدولار است ولی می تواند حوزه عملکرد وسیع داشته باشد . این plc ها با نرم افزار step7 برنامه نویسی و پیکر بندی می شوند .
Logo!logic modules
کنترل کننده ساده و ارزان قیمتی است که برای کار های کنترلی کوچک (مانند ساختمان ها یا ماشین های کوچک )کاربرد دارد.این plcبصورت compact است و برنامه ریزی آن توسط کلید های روی آن انجام می شود .برای برنامه ریزی از طریق کامپیوتر باید نرم افزار logo !softcompactنصب گردد.
Simatic c7
C7 ترکیبی است از s7-300 و oprator control علاوه بر اینکه کار کنترلی را انجام می دهد بر روی نمایشگر آن میتوان پیغام ها ،رخدادها ،مقادیر مرتبط با فرایند را دید و فانکشن هایی را نیز توسط صفحه کلید روی آن اعمال نمود. C7 کمپکت بوده و انواع مختلفی دارد که توانایی آنها با هم متفاوت است
برای برنامه نویسی این plc ها باید علاوه بر step7 نرم افزار protocol نیز روی کامپیوتر نصب شود
Simatic505
سری 505 که خود انواع مختلفی دارد برای کاربرد در حوزه های کوچک و متوسط طراحی شده است همه اعضای این خانواده به صورت compact عرضه می شوند و برنامه نویسی انها با نرم افزار texas instruments می باشد .
خانواده s7
s7-20
یک micro plc ارزان قیمت است .می تواند برای مقاصد ساده تا نسبتا پیچیده کنترلی بکار رود . نصب برنامه نویسی ،و کار با آن ساده است . بصورت compact عرضه می شود وi/o های آن
on-bord است .انواع مختلفی دارد و در برخی انواع آن می توان مدول اضافی نیز در کنار cpu قرار داد . برنامه نویسی آن با نرم افزار step7-micro/win انجام می شود .
S7-300
یک mini plc است .حوزه عملکرد آن متوسط است مدولار است مدول های آن تنوع زیاد دارد بسهولت قابل توسعه است بر نامه نویسی آن با step7 انجام می شود
s7-300f
برای سیستم های که نیاز به ایمنی زیاد دارند یا اصطلاحا fail-safe هستند طراحی شده است پایه آن s7-300 است در انتهای کدcpuحرف fمعرف این نوع است مانند cpu315f
S7-300c
شبیه s7-300 است با این تفاوت که cpu همراه با مدول دیگری مانند ورودی خروجی بصورت compact عرضه شده است در انتهای کد cpu حرف c معرف این نوع است مانند cpu314c 0
S7-400
حوزه عملکرد وسیع دارد مدولار است حجم زیادی از سیگنال ها را می تواند پو شش دهد براحتی قابل توسعه است در مقایسه با s7-300 سرعت پردازش بالاتر ،حافظه بیشتر و امکانات وسیعتری را داراست
برنامه نویسی آن با s7 انجام میشود
S7-400h
` پایه ان همان s7است ولی در جائی که high availability مورد نیاز است بکار می رود مانند جائی که هزینه راه اندازی مجدد سیستم پس از رفع عیب بالا است پروسه ای که اگر متوقف شود منجر به خسارت زیاد می شود جائی که بهره برداری از پروسه بدون مانیتورینگ و با حداقل پرسنل تعمیراتی انجام می شود .
S7-400fh
پایه آن s7-400 است توانائی های s7-400h را دارا است توانائی های f-system رادارا است یعنی برای کاربرد هائی که درجه ایمنی بالائی دارند نیز متناسب است
S7 و نسخه های مختلف آن :
در نگاه اول نرم افزار s7 را باید به دو نوع زیر تقیسم نمود:
2. s7 که برایs7-300.s7-400- و همچنین c7 بکار می رود.
مورد دوم یعنی s7 نسخه های مختلفی دارد که آخرین انها نسخه step7 v5.3 می باشد از مارس 2004 عرضه شده است و تفاوت های مختصری با نسخه قبلی ان یعنی نسخه 5.2 دارد
Step7(5.2) از دسامبر 2002 به بازار آمد و جایگزین نسخه قبلی یعنی s7 v5.1 گردید به طور کلی آین نرم افزار قادر به انجام امور زیر روی کنترل کننده ها و متعلقات انها میباشد:
پیکر بندی سخت افزار و تنظیم پارامتر های ان
-پیکر بندی و تنظیم ارتباطات(شبکه)
-برنامه نویسی
-تست وراه اندازی و عیب یابی
ارشیو سازی
در v5.2 نسبت به نسخه قبلی امکانات جدید تری اضافه شده است که از مهمترین انها می توان امکان پیکر بندی سخت افزار در مد کاری run یا اصطلاحا(configuration in run) cir را نام برده در فرایند های پیوسته که هیچ توفیقی نباید ایجاد شود توسط این قابلیت میتوان در مد run پیکر بندی سخت افزار را تغییر داد مثلا یک مدول جدید اضافه کرد در این حال وقفه ای که به پروسه داده می شود کمتر از یک ثانیه خواهد بود و در طول این مدت ورودی ها و خروجی ها آخرین حالت خود را حفظ می کند cir برای cpu های s7-400 از firam ware3.1 به بعد امکان پذیر است.
Step7 mini ,step 7 lite
این دو نسخه هایی از s7 هستند که نسبت به step7 پایه(یعنی v5.1 یا v5.2 )امکانات کمتری در انها وجود دارد و برای کارهای نسبتا سادهتر طراحی شده اند به عنوان مثال نسخه lite :
فقط برای s7 300 قابل استفاده است .
برنامه نویسی فقط به سه زبان lad, fbd, stl امکان پذیر است
ارتباط با شبکه را ساپورت نمی کند .
Step 7 proffesional:
در این نسخه علاوه بر s7 v5.2 پکیج های دیگری که قبلا به صورت optional عرضه می شدند یکجا ارائه شده اند که عبارتند از :
S7-plcsim سیمولاتور نرم افزاری است
S7-pdiag برای تشخیص عیب بکار می رود
S7-graph v5.2 برای برنامه نویسی به صورت sfc بکار می رود
S7-scl v5.2 برای برنامه نویسی بصورت st بکار می رود
مزیت های s7 به s5 :
S7 نسبت به s5 نقاط قوت و مزیت های متعددی دارد اما از مهمترین ویژگی های ان می توان به دو مورد زیر اشاره کرد :
1- تطابق با استاندارد iec 1131 :
زیمنس مدعی است که این استاندارد بویژه بخش سوم انرا که مربوط به برنامه نویسی است در s7 تا حد زیاد رعایت کرده است در حالیکه s5 فاقد این تطابق است
کارت یا مبدل ارتباطی بین کامپیوتر و plc که می تواند یکی از انواع زیر باشد :
Pc adaptor
این اداپتوراز یک طرف به پورت mpi کنترل کننده وصل می شود و از سمت دیگر به کامپیوتر .دو نوع آداپتور قابل اتصال به پورت usb را نشان می دهد
کارت برای نصب در اسلات isa یا pci کامپیوتر
با نصب این کارت خروجی مستقیما توسط کابل وکانکتور به plc متصل می گردد و نیاز به آداپتور بیرونی نمی باشد (مانند کارت cp5611 )
کارت pcmcia :
این کارت در اسلات notebook نصب می گردد مانند کارت cp5511
تذکر : اگر به جای کامپیوتر از pg استفاده شود نیازی به استفاده از مبدل های فوق نیست pg های زیمنس دارای پورت خروجی که مستقیما به plc وصل می گردند هستند. پساز اینکه کارت ارتباطی در اسلات کامپیوتر قرار گرفت و توسط کابل ارتباطی به پورت plc متصل گردید باید تنظیم های لازم انجام پذیرد.برای اداپتور نیز ابتدا انرا به پورت plc وصل کرده و سپس ارتباطش را با کامپیوتر توسط کابل ارتباطی برقرار می کنیم تنظیمات لازم توسط برنامه set pag/pc inter face که ایکون انرا بعد از نصب s7 میتوان در control panel مشاهده کرد امکان پذیر است .
Mpi در حالتی انتخاب می شود که آداپتور به پورت mpi مربوط به plc متصل باشد
Profibus در حالتی انتخاب می شود که آداپتور به پورت dp مربوط به plc متصل باشد auto هر دو حالت فوق را پوشش می دهد با کلیک رویperties pro می توان مشخص کرد که اداپتور به کدام پورت سریال متصل شده است سایر پارامتر ها را معمولا برای اداپتور لازم نیست تغییر دهیم سرعت پیش فرض 19200 میباشد اگر 38400 انتخاب شود بشرط اینکه کابل ارتباطی انرا ساپورت کند باید این تنظیم توسط dip سوئیچ روی اداپتور در حالتی که اکتیو نیست نیز انجام شود نکته دیگری که باید خاطر نشان شود این است که سیستم عامل های me,98,95,xp,windows2000 به طور اتوماتیک کارت یا آداپتور را میشناسد ولی در windows nt باید به صورت دستی اختصاص داده شود چون nt قابلیت plug and play را ندارد.
نرم افزار های جنبی و مرتبط با s7 :
برخی نرم افزار های دیگر که توسط زیمنس در خانواده simatic عرضه می شوند و بعضا مکمل step7 هستند با تقسیم بندی به سه دسته hmi,runtime,engineering در زیر آمده است
Engineering tools :
S7 scl
زبان برنامه نویسی سطح بالا میباشد که با زبان st ذکر شده در استاندارد iec1131-3 تنطبیق دارد و برای plc های s7 300 cpu 314 وبالاتر و s7-400,c7 بکار می رود همانطور که قبلا اشاره شد این نرم افزار در نسخه step 7 professional موجود است
S7 higraph
برای کنترل ترتیبی بصورت گرافیکی با ابزار های پیشرفته و در plc های s7-300,s7-400,c7 بکار می رود
S7graph
برنامه نویسی به صورت گرافیکی است که برای کنترل ترتیبی بکار می رود و با زبان sfc مندرج در استاندارد iec 1131-3 تطبیق دارد و برای polc های s7-300,s7-400 بکار میز رود این نرم افزار در نسخه s7 professional موجود است .
S7plcsim :
سیمولاتور نرم افزاری است که برای تست برنامه وقتی plc در دسترس نباشد بکار می رود این نرم افزار نیز در نسخه s7 professional موجود است
Cfc :
توسط این نرم افزار برنامه نویسی بصورت گرافیکی توسط یکسری بلوک های از پیش تعیین شده طراحی و انجام می شود .این نرم افزار را باید جداگانه تهیه کرد و برای s7-300,s7-400,f/h system کاربرد دارد
S7-pdiag :
ابزار عیب یابی است که برای plc های s7-300 با cpu314 و بالاتر و s7-400 بکار می رود در نسخه s7 professional موجود است
Teleservice :
برای ارتباط با plc از طریق خط تلفن به کار می رود وقتی plc توسط آداپتور خاص (ts) به مودم متصل باشد با استفاده از کامپیوتر به صورت remote می توان انرا از هر نقطه ای برنامه نویسی و رفع عیب کرد
Docpro :
برای مستند سازی به کار می رود با استفاده از ان می توان پس از اتمام پیکر بندی و برنامه نویسی نقشه های wiring و متن برنامه را با فرمت مناسب تهیه و چاپ کرد
Standard pid control :
ابزار کمکی برای طراحی کنترل کننده های pid است که برای plc های s7-300 با cpu31c و بالاتر و s7-400,c7 بکار می رود
Fuzzy conrol :
برای کنترل فازی است و در مواردی به کار می رود که توصیف ریاضی پروسه مشکل یا نا ممکن با شد .در برخی موارد ترکیب این روش با لوپ های pid نتیجه بهینه را برای سیستم کنترل بهمراه دارد
Modular pid control :
ابزلری است که برای طراحی لوپ های کنترلی پیچده بکار می رود و دارای فانکشن ها و بلوک های از قبل طراحی شده می باشد
Neurosystem :
شبکه های عصبی مورد استفاده در سیستم کنترل را می توان با این ابزار طراحی کرد و آموزش داد.
Prodave mpi :
برای پردازش ترافیک دیتا در شبکه mpi بین سیستم های s7,m7,c7 بکار می رود
Simatic protocol :
ابزار پیکر بنی است که برای سیستم های کنترل اپراتوری و بخش مانیتورینگ مربوط به c7 بکار می رود
Simatic win cc :
نرم افزاری است که برای طراحی سیستم مانیتورینگ بکارمی رود
جایگاه نرم افزار s7 در سیستم کنترل :
در هنگام طراحی معمولا نیازی به اینکه plc یا ماشین در کنار pc یا pg موجود باشد نیست فقط لازم است که قبل از شروع کار فرایند به خوبی مطالعه شده و وردی و خروجی ها مشخص باشند و منطق سیستم کنترل معلوم شده باشد بهتر است سخت افزار plc نیز انتخاب شده باشد با چنین معلوماتی می توان کار طراحی را با استفاده از s7 بصورت offline یعنی بدون اتصال به plc انجام داد.
پس از تکمیل برنامه لازم است آنرا به plc دانلود کنیم پس در این حالت pc یا pg و نرم افزار plc ابزار کار هستند اگر سیمولاتور نرم افزاری در دست باشد بسیاری از نیاز های این مرحاه را مرتفع می کند و نیاز چندانی به plc نیست .
در این مرحله ماشین یا تجهیز نیز به جمع قبلی می پیوندد و برنامه به صورت عملی و ابتدا در حالتی که ماشین بدون بار است یا از تجهیز هنوز بهره برداری نمی شود تست می گردد که به این مرحله تست سرد (cold test) نیز می گویند سیگنال ها به تدریج و نه یک دفعه وارد مدار می شوند و بخش های برنامه قدم به قدم تست می شود پس از ان تست گرم شروع می شود یعنی ماشین زیر بار می رود و از تجهیز به صورت ازمایشی بهره برداری می شود تا سایر ورودی خروجی هایی که در تست سرد فعال نبودند تست گردند . برای انجام تست های فوق وجود s7 روی pc یا pg و ارتباط online با plc ضروزی است
operation یا بهره برداری :
پس از تکمیل مراحل تست و اعمال تغییرات لازم در برنامه plc کار عادی فرایند شروع می شود در اینجا نیازی به pg یا pc و نرم افزار s7 نیست اگر چه باید برای نیاز های احتمالی در دسترس باشند .
Troubleshooting یا عیب یابی :
در صورتیکه مشکلی در کار بهره برداری از فرایند پیش بیاید که ناشی از اجزای سیستم کنترلی باشد . مجددا به pc یا pg و نرم افزار s7 نیاز پیدا می شود این برنامه با امکانات مختلفی که در ان تعبیه شده می تواند به شناخت عیب و رفع ان کمک زیادی بنماید .
تنظیم پارامتر های کارت های di
در پنجره کاتالوگ در زیر مجموعه sm-300 کارت های digital input متنوعی را مشاهده می کنیم که به کلیک روی آنها توضیحات مختصری راجع به کارت در پایین پنجره کاتالوگ ظاهر می شود به طور کلی این کارت ها را می توان به شکل زیر دسته بندی کرد
تقسیم بندی کارت های digital input
از نظر تعداد ورودی |
از نظر ولتاژ |
از نظر قابلیت های خاص |
4ورودی |
24vdc |
بدون ویژگی خاص |
8ورودی |
48vdc |
تشخیص قطع شدن تغذیه |
16ورودی |
120vdc |
ایجاد وقفه بر اساس لبه ورودی |
32ورودی |
230vdc |
تاخیر در گرفتن |
برای کارت هایی که قابلیت خاص ندارند وقتی روی انها کلیک می کنیم پنجره ای باز می شود که دو بخش دارد
General :
در این بخش توضیحاتی راجع به کارت , ویژگیها و کد سفارش آن همراه با نام ان آمده است که کاربر در صورت تمایل میتواند نام را به دلخواه تغییر دهد .
Address :
در این بخش آدرس هایی که توسط سیستم به کارت اختصاص داده شده آمده است . start آدرس شروع و end آدرس نهایی را نشان می دهد .بعنوان مثال برای کارتDI16XDC24V با 16 ورودی در شکل صفحه بعدمشاهده می کنیم که آدرس شروع 0و ادرس انتها 1است بنابراین لیست آدرس های 16کانال که هر کدام یک بیت (0و1) هستند مانند جدول زیر خواهد بود بعبارت دیگر این مدول دارای دو بایت آدرس است و میدانیم که 2BYTE=16BIT
کانال |
ادرس |
0 |
0.0 |
1 |
0.1 |
2 |
0.2 |
3 |
0.3 |
4 |
0.4 |
5 |
0.5 |
6 |
0.6 |
7 |
0.7 |
8 |
1.0 |
9 |
1.1 |
10 |
1.2 |
11 |
1.3 |
12 |
1.4 |
13 |
1.5 |
14 |
1.6 |
15 |
1.7 |
اگر چند مدول DI مشابه یا متفاوت داشته باشیم نیز مشاهده می کنیم که آدرس های تولید شده توسط سیستم با یکدیگر هیچ تداخلی ندارند .در S7-300 تغییر ادرس توسط کاربر بعضا امکان پذیر است برخی از CPU های 300این امکان را ساپورت می کنند از CPU315 به بالا .
در این حالت گزینه SYSTEM SELECTION قابل انتخاب است میتوان انرا غیر فعال نمود و ادرس جدید را وارد کرد شماره ادس نمی تواند از ADDRESS AREA مربوط به CPU بزرگتر باشد بعلاوه اگر ادرس جدید تداخلی با ادرس دیگر داشته باشد سیستم پیغام میدهد و در عین حال ادرس دیگری را پیشنهاد می دهد در مجموع پیشنهاد میشود که حتی المقدور کاربر ادرس های پیش فرض سیستم را تغییر ندهد .
در بین کارت های DI موجود در کاتالوگ برخی از کارت ها قابلیت های خاص دارند . توانایی اعمال وقفه (INTERRUPT) مهمترین قابلیت انهاست که این ویژگی در توضیحات زیر پنجره کاتالوگ دیده می شود بخش PROPERTIES این کارت ها نسبت به کارت های معمولی یک بخش اضافه بنام INPUT دارد که از بخش های زیر تشکیل شده است
DIAGNOSTIC INTERRUPT :
در حالت عادی غیر فعال است اگر فعال شود در صورت قطع تغذیه سنسور (مثلا به علت قطع فیوز)شماره کانال مربوطه در بافر تشخیص عیب CPU ثبت می شود . در جلوی NO SENSOR SUPPLY یک گزینه برای ورودی های 0تا7و یک گزینه نیز برای ورودی های 8تا15 وجود دارد میتوان هر دو یا یکی را بدلخواه فعال نمود بدیهی است در صورت قطع تغذیه آنچه در بافر ثبت می شود آدرس گروه کانال است نه ادرس خود کانال .
HARDWARE INTRRUPT :
در حالت عادی غیر فعال است اگر فعال شود جدول پایین که مربوط به تریگر کردن این وقفه است نیز فعال می شود در این جدول برای هر دو کانال ورودی یک گزینه وجود دارد . با انتخاب این گزینه میتوان تعیین کرد که وقتی ورودی این کانال تغییر میکند (لبه مثبت یا منفی) وقفه اعمال نماید .
INPUT DELAY :
در این قسمت میتوان تعیین کرد که ورودی را با چند میلی ثانیه تاخیر بگیرد توصیه میشود در دو حالت زیر این عدد را روی ماگزیمم بگذارید
1-با سوییچ های ساده و بدون حفاظت .تاخیر فوق باعث می شود که پرش لحظه ای ولتاژ مشکلی ایجاد نکند .
2-اگر طول کابل تا سنسور زیاد و کابل بدون شیلد باشد تاخیر فوق باعث می شود که ورودی را در زمان مناسب بگیرد .
دسته بندی | برق |
بازدید ها | 16 |
فرمت فایل | doc |
حجم فایل | 1669 کیلو بایت |
تعداد صفحات فایل | 54 |
رشته برق در مورد مترو تهران و کرج
مقدمه:
در مجموعه مترو تهران و کرج از 4 گونه از قطارهای برقی استفاده می شود که شامل قطارهای خط 5- خط2- شامل قطارهای AC,DC و قطارهای خط 1 نیز که شامل قطارهای AC,DC است میشود قطارهای AC مشترک در خطوط 1و2 از یک نوع می باشد و همچنین قطارهای DC در دو خط نیز با تفاوت اندکی با یکدیگر یکسان است ولی قطارهای خط 5 دارای شکل حرکتی و نوع دیگری می باشد هم از لحاظ ساختمان و هم از نظر نوع کشش آن قطارهای خط 5 بنا به نیاز دارای دو واگن یکی کشنده master در سمت حرکت به سمت جلوی (حرکت Forward) و یکی هل دهنده slave در انتهای قطار می باشد یعنی در حین حرکت فقط دو واگن از قطار فعال می باشد و بقیه واگن ها به صورت تریلر Trailer می باشد. قطارهای AC مشترک مورد استفاده در خطوط 1و2 دارای ساختار مشابه یکدیگر بوده و فرق اساسی آنها در استفاده از جریان و ولتاژ AC در مقابل قطارهای dc که ولتاژ و جریان مصرفی آنها DC است. تفاوت کوچک میان قطارهایDC خط 1 نسبت به خط2 در واگن های Trailer است در واقع قطارهای خط 2 دو واگن از این قطارها به صورت تریلر است در حالیکه در قطارهای DC خط 1 این طور نمی باشد.
قطارهای AC مشترک مورد استفاده در خطوط 1و2 دارای ساختار مشابه یکدیگر بوده و فرق اساسی آنها در استفاده از جریان و ولتاژ AC در مقابل قطارهای dc که ولتاژ و جریان مصرفی آنها DC است.
تفاوت کوچک میان قطارهایDC خط 1 نسبت به خط2 در واگن های Trailer در واحد قطارهای خط 2 دو واگن از این قطارها به صورت تریلر است در حالیکه در قطارهای DC خط 1 این طور نمی باشد.
تجهیزات نصب شده بر روی پانل جلوی اپراتور :
مانومتر هوا
این نمایشگر جهت نمایش فشار هوای لوله اصلی قطار و همچنین فشار سیلندر ترمز در هنگام
ترمزگیری برای اپراتور میباشد. این مانومتر دارای دور رنجبندی سیاه و قرمز رنگ که دارای دو
عقربه به همین رنگها نیز میباشد.
نمایشگر فشار هوا
قرمز : فشار هوای لولة اصلی
مشکی : فشار هوای سیلندر ترمز واگن محلی
دستگیره ترمزی
دستگیره ترمزی یکی از اجزاء سیستم کنترل ترمز در کابین اپراتور میباشد.تجهیزات کنترل ترمز
توسط اپراتور به دو نوع است، یک نوع برای کابین اپراتور در واگن MC و TC و دیگری برای پانل
ایستاده د ر واگن MS ، اپراتور برای تنظیم سرعت قطار و کنترل بر حالت ترمزگیری، دستگیره
ترمزی در گامهای مختلف قرار میدهد.
شاسی شروع سربالایی : Hill start
در شرایط ویژه مثلاً وقتی قطار در سربالایی یا شیب زیاد پارک شود، مدار شروع سربالایی
Hill start circuit برای محافظت قطار از سُرخوردن قبل از حرکت تعبیه شده است .
سوئیچ ریست : Reset
سوئیچ RESET فقط در مورد خطاهای اضافه بار مدار اصلی و بیبرقی مدار اصلی کاربرد دارد،
برای غلبه بر این خطاها از سوئیچ RESET استفاده می شود .
بوش باتن ترمز اضطراری : Emergency break
راهبران از این بوش باتن در مواقع اضطراری جهت نگه داشتن سریع قطار استفاده میکنند .
صفحه کلید عملکرد دربها :
این صفحه کلید از سه قسمت “Door selecting” کلید سلکتوری انتخاب عملکرد دربها و
کلیدهای فشاری open و close دربهای سمت راست و دربها سمت چپ تشکیل گردیده است،
اپراتور با توجه به استفاده از درهای ‘‘یا تست’’ کلید انتخاب عملکرد دربها را در موقعیت R یا L یا
L/R قرار میدهد و یا برای اینکه دربها قابلیت بازشدن را نداشته باشنددر وضعیت صفر قرارمیدهد.
مارش تعیین جهت حرکت قطا
اپراتور با قراردادن مارش در هر یک از حالات FW یا BW میتوان قطار را به سمت جلو یا عقب
هدایت کند .
درام حرکت FW/BW
صفحه TDU “Text Display Unit”
این کلید نشاندهنده یک واسطه نوشتاری بین اپراتور و سیستم ATP می باشد
شناخت تجهیزات سیستم ATP داخل کابین اپراتور :
الف : صفحه MFSD :
این صفحه نما یشگر پل ارتباطی بین سیستم ATP و اپراتور است که اطلاعات سیستم ATP
از قبیل سرعت جاری- سرعت هدف - مسافت هدف – سقف سرعت را در اختیار اپراتور قرار
می دهد . همچنین کلید BREAK که هم به عنوان نشان دهنده و هم کلید فشاری زرد رنگ
است که در هنگام اعمال ترمز توسط سیستم ATP روشن گردیده و با کاهش سرعت نسبت به
سقف سرعت شروع به چشمک زدن کرده که اپراتور با فشار دادن آن ترمز اعمال شده توسط
ATP به قطار را آزاد می کند .
ب : صفحه TDU :
این کلید نشاندهنده یک واسطه نوشتاری بین اپراتور و سیستم ATP می باشد . و از آن برای
نشان دادن پیغامها استفاده می شود . کلیدهای سمت چپ این صفحه جهت تنظیم روشنایی و
شفافیت کاربرد دارند . در هنگام در یافت یک پیغام خطا صدای آ لارمی شنیده شده ویک
نشان دهنده بروز خطا Ack در بالای کلید F1 چشمک خواهد زد تا هنگامی که اپراتور این
کلید را فشار ند هد صفحه دیگر ظاهر نخواهد شد در اصل کلید Ack یا F1 باید فشرده شود
تا کلیدهای F3 و F4 قابلیت کار کرد داشته باشند کلید F2 در این صفحه کاربردی ندارد
کلید F3 صفحه وضعیت را به نمایش می گذارد این صفحه فعال یا غیر فعال بودن سیستم
ATP و عملکرد دربها را به نمایش می گذارد. کلید F4 خطاهای مربوط به سیستم ATP
را به نمایش می گذارد در کل در صفحه TDU چهار صفحه خطا وجود دارد . کلید F5 :
مربوط به ورود اطلاعا ت است که شامل شماره قطار و شماره اپراتور و شماره مقصد می باشد
که توسط کلید های ارقام و جهات وارد شده و توسط کلید Enter ثبت می گردد .
نمایشگر ماتریسی (DISPLAY)
خطاهای جزئی در واحد ترمز : Brake unit minor faul
عموماً این مشکل خیلی جزئی بوده و عواقب جانبی برای ادامه حرکت قطار ایجاد نمیکند
خطای اصلی سیستم ترمز : Brake unit maijor fault
این خطا خیلی مهم و جامع و در عین حال فراگیر است که با توجه به وضعیت نمایشگر ماتریسی
دارای دو حالت میباشد .
الف : چنانچه این خطا بعد از مدتی محو شود که قطار می تواند ادامه مسیر دهد
ب : چنانچه این خطا به طور دائم روشن بماند که اپراتور باید به صورت دستی ترمز را آزاد کند .
اضافه بار و یا اتصال به زمین مدار اصلی : Over load/Groanding of main circuit
این خطا در دو حالت حین حرکت (اعمال تراکشن)و در زمان اعمال ترمز سرویس رخ میدهد.
روشن شدن نشاندهنده خطا بر روی صفحه نمایشگر بدین مفهوم بوده، که جریان مدار اصلی قطار
زیاد بوده و یا اتصال به زمین صورت گرفته است .
بیبرقی مدار اصلی Main circuit nopower
معمولاً این خطا با اضافهبار (over load) همراه بوده و زمانیکه فقط این خطا مشاهده شود بدین
مفهوم است که مدار تراکشن مربوطه قطع است .
قطع برق موتور ژنراتور : AC under voltage
خطای AC مربوطه به مدارات 220 V مصرفی در قطار میباشد .
بایپس شدن چاپرها : Chapper by pass
هر گاه دسته تراکشن در ناچ 3 قرار گرفته و سرعت قطار بالاتر از 56 km/h باشد ، چاپرها بصورت
خودکار بایپس میشوند .
ترمز پارکینگ : Parking brake
زمانی که ترمز پارک درگیر باشد این نشانگر روشن است .
ایزوله کردن تراکشن موتور : Local traction cut off
زمانی که تراکشن موتور یکی از واگنها دچار نقص گردیده و دارای خطای - grounding یا صدا
و لرزشهای غیرعادی میباشد، اپراتور با قراردادن کلید SD31 از حالت صفر به یک ، تراکشن واگن
مربوطه را به حالت ایزوله در میآورد .
درب بسته نشده : Door not well closed
در زمان بازکردن دربها توسط اپراتور، ابتدا این نشاندهنده برروی صفحه نمایشگر روشن میشود .
تمام دربها باز هستند : all door opened
زمانیکه تمام دربهای قطار باز باشند این نشاندهنده نیز بر روی صفحه نمایشگر روشن میگردد .
آزاد نبودن ترمز : no release
هنگامی که قطار در حالت ترمز بوده – یکی از گامهای 1 تا 15 دسته ترمزی و یا ترمز اضطراری –
و یا فشار سیلندر ترمز بیش از 4 bar باشد، این نشانگر روشن خواهد شد و تا زمانیکه این نشانگر
خاموش نگردد، قطار فاقد نیروی کشش خواهد بود.
فشار پائین low pressure :
این نشانگر در هنگامی که فشار لوله اصلی هوا به زیر 5/5 bar برسد روشن میشود .
ترمز اضطراری : emergence break
این نشانگر در زمان فعال شدن ترمز اضطراری قطار به هر دلیل ممکن روشن میگردد تا به اپراتوراطلاع دهد که ترمز اضطراری قطار فعال میباشد
موتور ژنراتور : “Motor Genrator”
دستگاه مزبور یکی از دستگاههای مهم کمکی است که جهت مواردی چند در قطار نصب شده است.
ولتاژ “750 V DC” یک دستگاه موتور الکتریکی DC را فعال نموده و موتور مذکور که به یک
ژنراتورکوپل شده، ژنراتور مزبور را متحرک ساخته و این ژنراتورکه یک مولد برق “AC” سنکرون میباشد برق 220 V AC سه فاز 50 HZ را تولید مینماید.
خطای افت ولتاژ : AC under voltage
درصورت عدم تأمین برق 220v سه فاز که با روشن شدن چراغ AC under voltage یک
واگن _ دو واگن و یا سه واگن درصفحه display و نیز ازطریق فرکانس متر و ولتمتر قابل
تشخیص می باشد .
نمایشگر ولتاژ و فرکانس
آشنایی با چاپر و وظایف آن در قطارهای DC :
وظیفه اصلی چاپر تنظیم یک سری مقاومت می باشد که با توجه به ناچ حرکتی این کار را انجام
می دهد . و این کار توسط میکرو کامپیوتر که یکی از اجزای چاپر می باشد انجام می شود .
مقاومتهایی که برای شروع حرکت و همچنین در زمان ترمز دینامیک بکار می روند R0 , R1 ,
R2, R3 می باشند . و با رفتن به ناچ بالاتر مقاومتها توسط چاپر از مدار خارج می شوند . ودر ناچ
سه با خارج شدن مقاومتها چاپر نیز بای پس می شود . که چراغ مربوط به بای پس شدن چاپر هر
واگن بر روی DISPLAY روشن می شود . که معمولا بین سرعت 46 تا 56 کیلومتر اتفاق
می افتد . و چاپر از اجزای زیر تشکیل شده است .
میکرو کامپیوتر - خازنهای چاپر – سنسورهای ولتاژ و جریان – ترانسفورماتور و فن چاپر
میباشد . لازم به ذکر است که تغذیه چاپر توسط ولتاژ 220 v AC می باشد .
باکس چاپر درشکل زیر نشان داده شده است .
دسته بندی | برق |
بازدید ها | 19 |
فرمت فایل | doc |
حجم فایل | 3977 کیلو بایت |
تعداد صفحات فایل | 60 |
بررسی انواع تجهیزات خانواده FACTS
فهرست
عنوان |
فصل اول : پیشگفتار |
1-1 مقدمه |
1-2 محدودیت های انتقال توان در سیستم های قدرت 1-2-1 عبور توان در مسیرهای ناخواسته |
1-2-2 ضرفیت توان خطوط انتقال |
1-3 مشخصه باپذیری خطوط انتقال |
1-3-1 محدودیت حرارتی |
1-3-2 محدودیت افت ولتاژ |
1-3-3 محدودیت پایداری |
1-4 راه حلها 1-4-1 کاهش امپدانس خط با نصب خازن سری |
1-4-2 بهبود پرفیل ولتاژ در وسط خط |
1-4-3 کنترل توان با تغییر زاویه قدرت |
1-5 راه حلهای کلاسیک |
1-5-1 بانکهای خازنی سری با کلیدهای مکانیکی |
1-5-2 بانکهای خازنی وراکتوری موازی قابل کنترل با کلیدهای مکانیکی |
1-5-3 جابجاگر فاز |
فصل دوم : آشنایی اجمالی با ادوات FACTS |
2-1 مقدمه |
2-2 انواع اصلی کنترل کننده های FACTS |
2-2-1 کنترل کنندههای سری |
2-2-1-1 جبران ساز سنکرون استاتیکی به صورت سری(SSSC) |
2-2-1-2 کنترل کنندههای انتقال توان میان خط(IPFC) |
2-2-1-3 خازن سری با کنترل تریستوری (TCSC) |
2-2-1-4 خازن سری قابل کلیدزنی با تریستور (TSSSC) |
2-2-1-5 خازن سری قابل کلید زنی با تریستور (TSSC) |
2-2-1-6 راکتور سری قابل کلید زنی با تریستور (TSSR) |
2-2-1-7 راکتور با کنترل تریستوری (TCSR) |
2-2-2 کنترل کنندههای موازی |
2-2-2-1 جبران کننده سنکرون استاتیکی(STATCOM) |
2-2-2-2 مولد سنکرون استاتیکی (SSG) |
2-2-2-3 جبران ساز توان راکتیو استاتیکی(SVC) |
2-2-2-4 راکتور قابل کنترل با تریستور (TCR) |
2-2-2-5 راکتور قابل کلیدزنی با تریستور(TSR) |
2-2-2-6 خازن قابل کلیدزنی با تریستور (TSC) |
2-2-2-7 مولد یا جذب کننده توان راکتیو (SVG) |
2-2-2-8 سیستم توان راکتیو استاتیکی (SVS) |
2-2-2-9 ترمز مقاومتی با کنترل تریستوری (TCBR) |
2-2-3 کنترل کننده ترکیبی سری – موازی |
2-2-3-1 کنترل کننده یکپارچه انتقال توان (UPFC) |
2-2-3-2 محدود کننده ولتاژ با کنترل تریستوری(TCVL) |
2-2-3-3 تنظیم کننده ولتاژ با کنترل تریتسوری (TCVR) |
2-2-3-4 جبرانسازهای استاتیکی توان راکتیو SVC و STATCOM |
2-3 مقایسه میان SVC و STATCOM |
2-4 خازن سری کنترل شده با تریستور GTO (GCSC) |
2-5 خازن سری سوئیچ شده با تریستور (TSSC) |
2-6 خازن سری کنترل شده با تریستور (TCSC) |
فصل سوم : بررسی انواع کاربردی ادوات FACTS |
3-1 مقدمه |
3-2 منبع ولتاژ سنکرون بر پایه سوئیچینگ مبدل |
3-3 کنترل کننده توان عبوری بین خطی (IPFC) |
3-4 جبرانگر سنکرون استاتیکی سری (SSSC) |
3-5 جبرانگر سنکرون استاتیکی (STATCOM) |
3-6 آشنایی با UPFC |
3-6-1 تاثیر UPFC بر منحنی بارپذیری |
3-6-2 معرفی UPFC |
3-7 آشنایی با SMES |
3-7-1 نحوه کار سیستم SMES |
3-7-2 مقایسه SMES با دیگر ذخیره کننده های انرژی |
3-8 آشنایی با UPQC |
3-8-1 ساختار و وظایف UPQC |
3-9 آشنایی با HVDCLIGHT |
3-9-1 مزایای سیستم HVDCLIGHT |
3-9-2 کاربرد سیستم HVDCLIGHT |
3-9-3 عیب سیستم HVDCLIGHT |
3-9-4 بررسی اضافه ولتاژهای داخلی در خطوط انتقال قدرت HVDC |
3-10 مقایسه SCC و TCR از دیدگاه هارمونیک های تزریقی به شبکه توزیع |
3-11 SVC |
3-12 مبدل های منبع ولتاژ VSC |
فصل چهارم : نتیجه گیری |
منابع
فصل اول پیشگفتار1-1 مقدمه این نوشتار عهده دار معرفی ادوات جدید سیستم های مدرن انتقال انرژی میباشد که تحول زیادی را در بهرهبرداری و کنترل سیستمهای قدرت ایجاد خواهد کرد. با رشد روز افزون مصرف،سیستمهای انتقال انرژی با بحران محدودیت انتقال توان مواجه هستند.این محدودیتها عملاً بخاطر حفظ پایداری و تامین سطح مجاز ولتاژ بوجود میآیند.بنابراین ظرفیت بهرهبرداری عملی خطوط انتقال بسیار کمتر از ظرفیت واقعی خطوط که همان حد حرارتی آنهاست ، میباشد.این امر موجب عدم بهره برداری بهینه از سیستمهای انتقال انرژی خواهد شد.یکی از راههای افزایش ظرفیت انتقال توان،احداث خطوط جدید است که این امر هم چندان ساده نیست ومشکلات فراوانی را به همراه دارد.با پیشرفت صنعت نیمه هادیها و استفاده آنها در سیستم قدرت،مفهوم سیستم های انتقال انرژی انعطافپذیر(FACTS) مطرح شد که بدون احداث خطوط جدید بتوان از ظرفیت واقعی سیستم انتقال استفاده کرد.پیشرفت اخیر صنعت الکترونیک در طراحی کلیدهای نیمه هادی با قابلیت خاموش شدن و استفاده از آن در مبدل های منبع ولتاژ در سطح توان و ولتاژ سیستم قدرت علاوه بر معرفی ادوات جدیدتر،تحولی در مفهوم FACTS بوجود آورد و سیستمهای انتقال انرژی را بسیار کارآمدتر و موثرتر خواهد کرد . برای درک بهتر و شناساندن مشخصات برجسته این ادوات درقدم اول لازم است مشکلات موجود سیستم های انتقال انرژی شناسائی شوند.آنگاه راه حل های کلاسیک برای رفع آنها بیان می شوند.مبدلهای منبع ولتاژ،که ساختار کلیه ادوات جدید FACTS بر آن استوار است در بخش بعدی مورد بحث قرار می گردد و در خاتمه نسل جدید ادوات FACTS معرفی می شوند . 1-2 محدودیتهای انتقال توان در سیستمهای قدرت یک سیستم قدرت از سه قسمت عمده تولید،انتقال و مصرف تشکیل شده است. هدف یک مهندس بهرهبردار قدرت این است که توان خواسته شده مصرفکننده را تحت ولتاژ ثابت و فرکانس معین تامین نماید.از لحاظ کنترل روی مصرف کننده نمی توان محدودیت زیادی اعمال کرد زیرا او خریدار است و خواسته هایش باید تامین شود.در نتیجه ، کنترل اصلی در شبکه برق روی بخش تولید و انتقال است.حالت مطلوب در سیستم تولید و انتقال این است که این سیستم بایستی قابلیت تولید و انتقال توان خواسته شده را دارا باشد.معمولاً در طراحی اولیه،این خواسته در نظر گرفته می شود.ولی با گذشت زمان تغییراتی از قبیل رشد مصرف،اتصال شبکههای دیگر به شبکه قبلی و تاسیس نیروگاهها و خطوط انتقال جدید و ... این تعادل را بر هم زده و محدودیت هایی را در بهره برداری از شبکه قدرت بوجود می آورند. گسترش سیستم های قدرت و به هم پیوستن آنها در دو ناحیه متمایز صورت گرفت. ناحیه ای با درصد جمعیت زیاد و وجود نیروگاه های نزدیک به مصرف که توسعه سیستم قدرت را تبدیل به یک شبکه به همپیوسته غربالی تبدیل کرده است ، مثل شبکه های قدرت در اروپا و شرق ایالات متحده آمریکا و ناحیهای که مقدار توان عظیمی را از نیروگاههای آبی به مراکز مصرف در فواصل دور تحویل می دهد.از قبیل سیستمهای موجود در کانادا و برزیل . الحاق شبکهها به هم علاوه بر مزیت فراوانی که در برداشت،مشکلات عدیدهای را هم به همراه آورد. مشکلی که در انتقال توان سیستمهای به هم پیوسته غربالی وجود دارد، عبور توان در مسیرهای ناخواسته است که به عنوان مشکل توان در حلقه شناخته می شود.عبور این توان در مسیرهای ناخواسته موجب افزایش بار غیر مجاز و عدم بهرهبرداری بهینه از سیستم خواهد شد.لذا بایستی به طریقی توان عبوری از یک مسیر را کنترل نموده و از طرفی برای سیستم های انتقال انرژی طولانی مسئله توان در حلقه مشکل ساز نیست بلکه مشکل عمده در این سیستم ها ، مسئله پایداری گذرا و افت ولتاژ غیر مجاز است.به این معنی که برای حفظ پایداری شبکه و تثبیت سطح ولتاژ مجاز،توان عبوری در سیستم انتقال باید محدود شود.بر این اساس،حالت ایدهآل یک سیستم انتقال انرژی موقعی است که : 1. کنترل توان در مسیرهای خواسته شده انجام پذیرد. 2. ظرفیت بهره برداری کلیه خطوط در حد ظرفیت حرارتی قرار داشته باشد.در نتیجه مشکلات عمده در بهرهبرداری از سیستمهای انتقال انرژی عبارتند از عبور توان در مسیرهای ناخواسته و عدم بهرهبرداری از ظرفیت سیستمهای انتقال در حد ظرفیت حرارتی. 1-2-1 عبور توان در مسیرهای ناخواسته برای بررسی مسئله عبور توان در مسیرهای ناخواسته ، سیستم شکل (1-1) زیر را در نظر بگیرید. شکل (1-1) سیستم مورد مطالعه برای مساله توان در حلقهدر این سیستم دو ژنراتور A وB به ترتیب با تولید MW2000 وMW 1000،توان درخواستیMW3000 را از طریق خطوط AC با قدرت انتقالیMW 2000،(MW1000)AB،(MW1250) BC به بار نقطه C تحویل می دهند.قابل ذکر است که عبور توان در یک شبکه بعلت پارامترهای خطوط انتقالی به آسانی قابل کنترل نیست و در نتیجه،همانطور که در شکل نشان داده شده است ، خط BC بیش از قدرت نامی خویش توان انتقال می دهد.در حالیکه خطوط AC و AB هنوز توانائی انتقال توان بیشتر را دارند.اگر مصرف کننده C بخواهد توان بیشتری را تقاضا کند با وجود ظرفیت خالی خطوط مذکور انتقال توان به این مصرف کننده بخاطر افزایش بار خط BC امکان پذیر نخواهد بود. 1-2-2 ظرفیت توان خطوط انتقال برای بررسی مشکل دیگر سیستم های انتقال انرژی(عدم بهره برداری از ظرفیت کامل خطوط)لازم است مشخصه بار پذیری خطوط انتقال و مسایل وابسته به آن شناسائی شوند . 1-3 مشخصه بار پذیری خطوط انتقال سیستم های خطوط انتقال انرژی که توان نیروگاه های دور دست را به مصرف کننده می رسانند،به خاطر مسایل پایداری و افت ولتاژ،ظرفیت بارپذیری خطوط با مقدار واقعی آن تفاوت زیادی خواهد داشت. بارپذیری یک خط طبق تعریف برابر با حد بارگذاری خط (برحسب درصدی از بار امپدانس ضربه)در محدوده های مشخص حرارتی،افت ولتاژ و پایداری است. برای نخستین بار آقای Clair.St درسال 1953میلادی این مفهوم را مطرح کرد و بر اساس ملاحظات علمی و تجربی،منحنیهای قابلیت انتقال توان خطوط را در محدوده ولتاژ 330 کیلووات و تا طول 400مایل را بدست آورد .این منحنیها(که به نام خودش مشهور است)ابزار ارزشمندی برای مهندسان طراحی سیستمهای انتقال برای تخمین سریع حدود حداکثر بارگذاری خطوط است بعدها کار او بصورت محاسباتی تعمیم داده شده است بر اساس این مطالعات مشخصه بارپذیری خطوط انتقال توسعه سه عامل محدود میشود: محدودیت حرارتی،محدودیت افت ولتاژ و محدودیت پایداری. برای بررسی این محدودیت ها سیستم شکل (2-1) را در نظر می گیریم که دو انتهای سیستم انتقال(پایانه ارسالی و پایانه دریافتی)توسط مدل تونن آن نشان داده شده است. شکل(2-1). مدل ساده شده شبکه برای مطالعه مشخصه بارپذیری1-3-1 محدودیت حرارتی (Thermal Limits)حرارت حاصل از عبور جریان خطوط انتقال دوتاثیر نامطلوب دارد: - ذوب شدن و از دست دادن تدریجی قدرت مکانیکی هادی آلومینیومی بعلت قرار گرفتن در معرض دماهای بالا بطور مداوم. - افزایش انحنای خط و کاهش فاصله آن با زمین به دلیل انبساط خط در دماهای بالا (شکل 3-1) معمولاً دومین عامل از عوامل فوق،حداکثر دمای کاری مجاز را تعیین می کند. در این حد،انحنانی خط به حداکثر مجاز خود نسبت به زمین می رسد. بر اساس ملاحظات مربوط به ذوب،حداکثر دمای مجاز برای خطوط با مقدار آلومینیوم بالا مساوی 127 و برای سایر هادیها 150 است.حداکثر جریان مجاز، بستگی به دمای محیط و سرعت بالا دارد . ثابت زمانی حرارتی در حدود 10 تا 20 دقیقه است از این رو بین ظرفیتنامی پیوسته و ظرفیت نامی زمان محدود می توان تفاوت قایل شد.بر این اساس در وضعیتهای اضطراری با در نظر گرفتن جریان قبل از اغتشاش،دمای محیط و سرعت باد،از ظرفیت نامی زمان محدود استفاده کرد. شکل (3-1). فاصله مجاز خط انتقال از زمین و تاثیر دمای هادی در انبساط طول1-3-2 محدودیت افت ولتاژ با در نظر گرفتن مدل خط انتقال و پارامترهای تشکیل دهنده آن،پروفیل ولتاژ برای سیستم شکل (2-1) به ازای فاصله خط و توان انتقالی نامی و بیباری در شکل(4-1)نشان داده شده است.همانطور که ملاحظه می شود،ولتاژ خط در طول خط ثابت نبوده و شدیداً تابعی از توان انتقالی خط خواهد بود.این تغییرات ولتاژ بایستی درمحدوده مجاز باشد لذا انتقال توان در این خطوط محدود به تغییرات دامنه ولتاژ خواهد بود.به بیان دیگراگر طول خط را به عنوان یک پارامتر در نظر بگیریم مشخصه بارپذیری خط را تابعی از طول خط براساس محدودیت افت ولتاژ را می توان بصورت زیر محاسبه کرد. مقادیر ولتاژ پایانه های ارسالی و دریافت و بر اساس محاسبه پخش بار بدست می آید و برای این سیستم محدودیت افت ولتاژ 5% در نظر گرفته شده است.آنگاه طول خط به عنوان یک پارامتر در نظر گرفته و با مقدار اولیه آن شروع می کنیم و دامنه ولتاژ را حساب می کنیم. مقدار بر اساس افت ولتاژ مجاز 5% چک می شود.اگر به حد مجاز رسید آنگاه انتقال توان به محدودیت افت ولتاژ رسیده و را از رابطه زیر محاسبه می کنیم . (5-1) سپس با جایگزینی آن در رابطه زیر مقدار توان پایانه ارسالی محاسبه می شود. (6-1) که A و B پارامترهای مشخصه خطوط انتقال و و زوایای آنها هستند و زاویه بین و می باشد.نسبت مقدار Ps/Psil بارپذیری را بر حسب پریونیت بیان می کند. اگر افت ولتاژ مرحله قبلی در محدوده مجاز خود قرار داشت.آنگاه افزایش داده می شود و از معادله (1-1) بدست می آید . سپس مقدار جدید طول خط این حلقه محاسباتی تکرار می شود تا مشخصه بارپذیری خط انتقال بر حسب تابعی از طول خط متناظر با محدودیت افت ولتاژ بدست می آید . شکل (4-1) . تغییرات ولتاژ وسط خط انتقال سیستم شکل (2-1) برای توان های انتقالی متفاوت1-3-3 محدودیت پایداری با توجه به مشخصه توان–زاویه سیستم شکل (2-1) که در شکل (5-1) نشان داده شده است،ملاحظه می شود که در حالت ایدهآل ژنراتور می تواند ماکزیمم توان انتقالی خود را در زاویه 90 درجه انتقال دهد که عملاً به خاطر ملاحظات پایداری با ضریب اطمینان 30% از ژنراتور بهرهبرداری می کنند.یعنی ماکزیمم توان خروجی ژنراتور نبایستی از 70% ظرفیت ماکزیم توان انتقالی خط افزایش یابد.زاویه ژنراتور متناظر با این محدودیت با استفاده از رابطه توان حدوداً بدست می آید. شکل (5-1) این محدودیت را برای خطوط انتقال با طولهای متفاوت(یعنی امپدانسهای متفاوت)نشان می دهد.همانطور که ملاحظه می شود با افزایش امپدانس خط(یا طول خط) برای تامین ضریب اطمینان 30% پایداری( متناظر با )، مقدار توان انتقالی مجاز متفاوت خواهد بود . |